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Diese Arbeit war ursprünglich geplant als eine Erweiterung um ein Kapitel zur

Masters Arbeit
”
Dynamics on Graphs“ [Wei04], vorgelegt im April 2004 an

der School of Mathematics, University of Bristol, Großbritannien. Die Gesamt-

arbeit sollte als Diplomarbeit eingereicht werden am Mathematischen Institut

der Friedrich-Alexander Universität Erlangen-Nürnberg.

Während der Entwicklung stellte sich heraus, daß viele Begriffe vereinfacht

oder zusammengefaßt werden konnten. So hat die Arbeit nun aus ästhetischen
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Chapter 1

Introduction

Methods from the analysis of geodesic flows on Riemannian manifolds of nega-

tive curvature are applied to the study of dynamics on a finite connected graph.

In particular, it turns out that there is the notion of cross ratio and geodesic

delay for a tree. The deeper reason for this lies in the fact that all (locally finite,

connected) graphs are non-positively curved spaces in the sense of Alexandrov

(see [BBI01], Ch. 4.2).

1.1 Riemannian Manifolds and Graphs

The geodesic flow φt : T1M → T1M (t ∈ R) on a compact connected n-

dimensional Riemannian manifold (M, g) of strictly negative sectional cur-

vature is ergodic1. This fact has first been proved by D. Anosov in 1967.

(See [Bal95] for a more recent proof by M. Brin.) The much simpler case of

constant negative sectional curvature was treated by E. Hopf in [Hop39].

Figure 1.1: A compact Riemannian manifold of negative curvature (left) — a

finite connected graph (right).



2 CHAPTER 1. INTRODUCTION

The dynamics on a finite connected graph that is described by transitions

from a vertex to some adjacent vertex along the time Z is ergodic1 if (and only

if) the graph is not a circuit where backtracking is allowed only in one direction.

Such a dynamics is mixing1, if (and only if) there are two closed orbits that have

coprime lengths. As an easy example, the tetrahedron depicted in Figure 1.1

has a mixing dynamics. See [Wei04] for a proof of these statements.

1.2 The Ideal Boundary

Following U.Hamenstädt [Ham99], the space of geodesics GM̃ on the univer-

sal cover (M̃, g̃) of a (compact, connected) Riemannian manifold (M, g) of

dimension n with strictly negative sectional curvature is defined as the set of

unit-speed flow lines modulo parameterization:

GM̃ :=

{
c : R 7→ T1M̃ :

c is a solution of the
geodesic equations

}
/ R. (1.1)

Using unique existence of the geodesic c with c(0) ∈ T1M̃ , this space can

naturally be identified with the quotient of the unit-tangent bundle T1M̃ under

the action of the geodesic flow Φt : T1M̃ → T1M̃ (t ∈ R)

GM̃ = T1M̃/ R. (1.2)

See e.g. [KS02] for a presentation of the concept of the geodesic flow.

The ideal boundary of a Riemannian manifold is defined intrinsically as the

set of equivalence classes of unit-speed ray asymptotics, see e.g. [Bal95]. As the

universal cover M̃ is diffeomorphic to the open ball D̃ := {x ∈ Rn : |x| < 1},
the ideal boundary of the Riemannian manifold (M̃, g̃) can be identified with

the sphere Sn−1 = ∂D̃. The space of geodesics has a natural identification with

pairs of distinct boundary points

GM̃ =
(
∂M̃ × ∂M̃

)
− ∆, (1.3)

∆ :=
{
(γ, γ) : γ ∈ ∂M̃

}
being the diagonal.

1A measure preserving transformation T : X → X on a probability space (X,B, m) is

called ergodic, if T−1(B) = B for B ∈ B implies m(B) ∈ {0, 1}. It is called mixing, if for all

A, B ∈ B holds lim
n→∞

m
`

T−n(A) ∩ B
´

= m(A)m(B). Analogue definitions are set for flows.
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As an example we consider the Poincaré disk D̃ := {z ∈ C : |z| < 1} with

hyperbolic metric as a Riemannian manifold of constant negative curvature −1

and R-dimension n = 2 (see e.g. [BV86]). The ideal boundary can be identified

with the topological boundary S1 = {z ∈ C : |z| = 1} of D̃. Elements of the

geodesic space GD̃ are oriented circular arcs perpendicular to the boundary,

including oriented straight lines through the origin 0 ∈ C. The correspondence

of Eqn. (1.3) in this context is given by assigning to each orbit of the geodesic

flow the ordered pair (c−, c+) ∈ (S1 × S1) − ∆ with c± := lim
t→±∞

c(t) for the

geodesic c : R → D̃.

Observe that in Riemannian geometry there are local objects like Christoffel

symbols and a curvature tensor. With (M̃, g̃) as above, global statements like

equations (1.2) and (1.3) are proved analytically. A tree however consists of

isolated vertices, so that tools from infinitesimal calculus are not applicable. To

escape from this dilemma, we use methods from synthetic geometry: a space

of curves is defined axiomatically on some space of points and makes a metric

space out of this point set (when there is a curve linking each two points).

Many more concepts like angles and curvature are defined for such spaces. The

recent progress on this field of mathematics is described, e.g. in [BBI01].

π−→

Figure 1.2: Projection from a tree to a covered graph.

The dynamics on a finite connected graph can be investigated using methods

from synthetic geometry, too. The curves linking vertices are paths. The

dynamics is lifted from the graph to a tree, since there is a sensible class of

paths for geometric considerations. These paths are called geodesics and they

are characterized by the fact that they have no backtracking, indeed they are

shortest paths. A method for constructing a covering tree T for a graph A

was presented in the Master’s thesis [Wei04]. See also J.-P. Serre [Ser80] and
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H. Bass [Bas93] for original literature. The tree T is wrapped over the graph

A by the projection π : T → A; confer Figure 1.2.

An abstract and more general description of this situation is the following:

we consider a tree T with vertex set V(T ) and a group of isometries acting

upon; and we consider the space G of bi-infinite geodesics g : Z → T of T
with the shift operator L acting by a left-shift on each geodesic. Note, if G is

non-empty then T is infinite because geodesics are injective paths.

The ideal boundary T (∞) of T is defined as the set of equivalence classes

of asymptotic (right-) rays. More precisely, the equivalence is a condition on

infinite intersection. The velocity space

VT :=
(
T (∞) × T (∞)

)
− ∆, (1.4)

∆ =
{
(γ, γ) : γ ∈ T (∞)

}
denoting the diagonal, is by Theorem 1 in the

correspondence

VT = G/ Z. (1.5)

On the other hand, for each vertex z ∈ V(T ) a so-called unit tangent space

T1
zT :=

{
l ∈ VT : z ∈ l

}
is defined. This set consists of all “directions” that

a geodesic through z can assume. The so-called unit tangent bundle is defined

as

T1T :=
{

(z, l) : l ∈ T1
zT , z ∈ V(T )

}
.

By Theorem 9 the velocity space can also be identified with a quotient of the

unit tangent bundle:

VT = T1T / Z. (1.6)

1.3 Patterson-Sullivan Construction

The hyperbolic space Hn is diffeomorphic to the open ball D̃ := {x ∈ Rn : |x| <

1}. The ideal boundary of Hn, while intrinsically defined, is naturally identified

with the sphere Sn−1 := {x ∈ Rn : |x| = 1}. A geometrical construction

that involves conformal densities2, on the ideal boundary can be used to write

invariant measures for the geodesic flow on the unit tangent bundle T1Hn,

confer [Sul79].

2These densities are called α-dimensional densities in [BM96]
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M. Burger and S. Mozes [BM96] extended this construction to very general

spaces, that include also the case of a tree. They showed in particular that

a measure that is constructed in this way on the universal cover of a finite

connected graph A corresponds to a so-called Markov measure for a symbolic

dynamics defined on the edges of A.

It was shown in the Master’s thesis [Wei04], that in case of ergodicity, these

measures resemble the Parry measure if the covering tree for the graph A is

minimal ([Wei04], Prop. 5.25). The Parry measure has an interpretation as

the asymptotic distribution of periodic orbits; in the case that the dynamics is

mixing, it is the unique measure of maximal entropy [KH89].

1.4 Symplectic Structure of a Tree

The central aim of this diploma thesis is to transcribe concepts and methods

from geodesic flows of Riemannian manifolds to trees. We consult the reference

U. Hamenstädt [Ham99] again.

1.1 Definition. A generalized cross ratio is a Hölder continuous positive func-

tion Cr on the space of quadruples of pairwise distinct points in ∂M̃ with the

following properties:

1. Cr is invariant under the action of the fundamental group π1(M) on
(
∂M̃

)4
;

2. Cr(ξ, ξ′, η, η′) = Cr(ξ′, ξ, η, η′)−1;

3. Cr(ξ, ξ′, η, η′) = Cr(η, η′, ξ, ξ′);

4. Cr(ξ, ξ′, η, η′)Cr(ξ′, ξ′′, η, η′) = Cr(ξ, ξ′′, η, η′);

5. Cr(ξ, ξ′, η, η′)Cr(ξ′, η, ξ, η′)Cr(η, ξ, ξ′η′) = 1.

We will find in Section 10.2 a function [·] : T ∞
Q → Z called (oriented)

concordance on the space T ∞
Q of quadrilaterals of boundary points such that

e[·] behaves algebraically like a cross ratio.

Further, Hamenstädt states in [Ham99] that there is a special and distin-

guished cross ratio, on mutually distinct quadruples of elements of ∂M̃ . It is

called the cross ratio of the metric g̃ or more precisely the cross ratio of the
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length cocycle of the metric g̃. She continues to say “this cocycle can be viewed

as an integrated version of the symplectic form dω on GM̃”.

Whether the above cross ratio on T ∞
Q is analogous to this special cocycle

remains an open question for future research.

Outside of this context but not less surprisingly, we show in Section 10.3,

that the concordance [·] behaves on the unit tangent bundle T1T as a symmetric

bilinear form on the tangent bundle TM̃ does in the restriction to the unit

tangent bundle T1M̃ .

1.5 Overview of this Thesis

Chapter 2 explains the graph model which is taken from J.P. Serre [Ser80] and

which is probably more general than necessary, because we are only working

with trees here. This model formed the basis of the Master’s thesis [Wei04]

and has been absorbed from there.

Chapter 3 introduces lines as the most basic geometric concept (besides

a vertex). We use the same way of writing lines as it is done in [FTN91]. In

contrast to that reference, a unifying way of writing geodesic segments, geodesic

right-rays, geodesic left-rays and bi-infinite with the same syntax is formally

developed. On the way through the chapter, the ideal boundary is defined

and the identification of VT = G/ Z is proved. Whereas these chapters mainly

review known results, my own work starts in Chapter 4.

There Triangles are defined; and — probably more important — a bifurca-

tion as the unique vertex in the intersection of the three sides of a triangle is

identified. There are a few very simple rules proved for handling bifurcations.

Chapter 5 is about quadrilaterals. This is the climax of geometrical ex-

aminations. (Have a look at the sizes of the following two geometrical chapters

and compare to this one.) The two important invariant quantities Klein type

and inner diameter of a quadrilateral are discussed exhaustively. The concor-

dance [·] is defined as a function from the space of quadrilaterals to Z and many

relations are proved for this function.

Chapter 6 is a short trip to pentagons only to prove one more equation

for the concordance (which is a function on quadrilaterals).
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Chapter 7 introduces the geometrical concept of a horocycle centered at

some boundary point. Horocycles allow to compare the distances of two vertices

to boundary points (which are infinitely far away!).

Chapter 8 examines the geodesic space G of a tree in greater detail. The

identification of G = VT × Z is endowed with a particular parameterization

κx that is fixed by choosing a base point x in the tree. Unstable- and sta-

ble manifolds are defined and operations on these manifolds are expressed in

coordinates. The unit tangent bundle T1T is defined and the identification

VT = T1T / Z is proved.

Chapter 9 We investigate a vector space of invariant functions on T ∞
Q

available in every tree — among them are concordance and delay — and we

check their symmetry behavior under permutations of variables. There is a

function that comprises the full information about Klein type and inner diam-

eter. Thus we can prove that there is only one independent invariant function

on T ∞
Q for the case of a regular tree and the full automorphism group. In

the last section, the delay is shown to have a geometrical interpretation as a

geodesic delay.

Chapter 10 starts with a first glance at the problem of finding invariant

functions for specific pairs (T ,H) of a tree T and a group H < Is (T ). More

important than this topic is to show how the results of this thesis can be

consulted to approach some of the questions of Section 1.4. This will be done

in the last two sections.



Chapter 2

Trees

2.1 Graphs and their Morphisms

A graph Γ in the sense of Serre [Ser80] consists of a set X = V(Γ), a set

Y = E(Γ) and the graph maps

Y −→ X × X, e 7−→ (o(e), t(e))

Y −→ Y, e 7−→ e,

which satisfy for all e ∈ Y

e = e, e 6= e and o(e) = t(e). (2.1)

We will often write Γ instead of V(Γ) when no confusion is possible. The maps

o and t are called point maps. An element x ∈ X is called a vertex of the graph

Γ, an element e ∈ Y is called an (oriented) edge and e is called the inverse edge

to e. The map ¯ is an involution on the set of edges Y , so that its orbits provide

r - ro(e) t(e)

e

r � ro(e) t(e)

e

Figure 2.1: The borders of an edge e (left). The edge e (right) points into the

opposite direction and has the same borders.

a partition of the edge set Y into subsets {e, e} each of which has two edges.
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Such a set including an edge together with its inverse is called a geometric edge.

The vertex o(e) = t(ē) is called the origin of e and the vertex t(e) = o(ē) is

called the terminus of e. These two vertices are called the borders of e. Two

vertices are called adjacent, if they are the borders of some edge e. Figure 2.1

displays the borders of an edge e and of the inverse edge e.

We form for every vertex x ∈ VΓ the set StΓ(x) = {e ∈ EΓ : o(e) = x}, the

star at x and write simply St(x). If St(x) is finite, then its cardinality is called

the degree of x, in short deg(x). Otherwise we set deg(x) = ∞. If deg(x) is

finite for all vertices, Γ is called locally finite. We are only interested in locally

finite graphs. A graph is called finite, when it has a finite number of edges and

vertices. If deg(x) = k for all vertices x ∈ VΓ then Γ is called regular or more

specifically k-regular.

There are maps, called graph morphisms between graphs that preserve the

graph structure. Given two graphs Γ1 and Γ2, a function

F :





V(Γ1) −→ V(Γ2)

E(Γ1) −→ E(Γ2)

is a morphism, if it obeys for all e ∈ EΓ1 the rules

F
(
o(e)

)
= o

(
F (e)

)

F
(
e
)

= F (e).
(2.2)

The map F will be denoted simply by F : Γ1 → Γ2.

A morphism F is called injective, surjective or bijective, if the restrictions

of F to the set of vertices V(Γ1) and to the set of edges E(Γ1) have these

properties. If Γ2 = Γ1 then the morphism F is called an endomorphism. A

bijective morphism is called an isomorphism, a bijective endomorphism is called

an automorphism and we define Aut (Γ) as the set of all automorphisms of Γ.

Note that the Aut (Γ) is a group under composition because a composition

of morphisms is a morphism and the inverse map to an isomorphism is an

isomorphism, see [Wei04].

A morphism α from a graph Γ1 to a graph Γ2 is locally injective, locally

surjective respectively locally bijective if the restriction

αx : StΓ1(x) −→ StΓ2(α(x))
⋂ ⋂

EΓ1 EΓ2
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of α to the local map αx = α|St(x) is injective, surjective respectively bijective

for each x ∈ X.

2.2 Diagrams

Graphs are represented pictorially in accordance with the following convention:

a point marked on the diagram corresponds to a vertex of the graph, a line

joining two marked points corresponds to a geometric edge.

We draw an arrow instead of a line in diagrams of graphs, if we want to

refer to an edge rather than to a geometrical edge with some label. Sometimes,

when drawing large graphs, we do not draw vertices (i.e. we remove them after

drawing the lines).

2.1 Example (Graphs and diagrams).

• A graph with one vertex x and two edges e,e is represented by each of

the diagrams in Figure 2.2.

rx ��
��

{e, e} rx ��
��

e?

Figure 2.2: Diagrams with one point and one line

• A graph with two distinct vertices x, y and two edges e, e that have bor-

ders x, y is represented by each of the diagrams in Figure 2.3. The first

r r{e, e}
x y r - re

x y

Figure 2.3: Diagrams with two points joined by a line

diagram does not specify if x or y is the origin of e. The second diagram

does.
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2.3 Paths, Circuits and Trees

An orientation of a graph Γ is a subset Y + ⊂ E(Γ) such that E(Γ) = Y + ⊔
Y +. The edges of Y + are called positive edges. A graph with an orientation

is called an oriented graph. Note that an oriented graph is fully specified

by a set of vertices X, the orientation Y + and information about origin and

terminus for the edges of Y +, see [Wei04]. The edges in Y + are in one-to-one

correspondence to the ones of Y + and their origin and terminus vertices are

given by equation (2.1). In diagrams of oriented graphs, always the positive

edge e of each geometrical edge is drawn as an arrow from the origin o(e) to

the terminus t(e).

The oriented graph pathn has vertices {0, 1, . . . , n} (n ≥ 1). The orientation

is given by the n edges [i, i + 1], 0 ≤ i < n, where o([i, i + 1]) = i and

t([i, i + 1]) = i + 1 (see Figure 2.4).

pathn = r - r - r -pp p r - r0 1 n − 1 n

[0, 1] [n − 1, n]

Figure 2.4: The oriented graph pathn

A morphism p from pathn to a graph Γ is called a path, the natural number

n is called the length of p and will be denoted as len(p). The edge sequence of

a path p of length n is given by

p([0, 1]), . . . , p([n − 1, n]),

These edges satisfy t(p[i, i + 1]) = o(p[i + 1, 1 + 2]) according to the morphism

rules (2.2).

Conversely, if a sequence (e1, . . . , en) of n ≥ 1 edges in a graph Γ is

given such that t(ei) = o(ei+1) holds for all 1 ≤ i < n, then a morphism

p : pathn → Γ is defined through F ([i, i + 1]) := ei+1 on the positive edges of

pathn. Equation (2.2) extends p to the vertices of pathn and to the remaining

edges of p in a consistent way. Thus we can define a path p through the edge

sequence

p = (e1, . . . , en). (2.3)
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For a path p of length n the sequence of vertices

p(0), . . . , p(n)

is called the vertex sequence of p. Two consecutive vertices of the vertex se-

quence of a path are adjacent. For completeness one should mention also paths

of length zero. The graph path0 consists of a single vertex and no edges. A

path of length zero is represented by a vertex in a graph and has an empty

edge sequence.

A path p of length n ≥ 0 is called a path from p(0) to p(n), the path p joins

p(0) with p(n). A graph Γ is called connected, if each two vertices x, y ∈ V(Γ)

are joined by a path. On the vertex set of each connected graph Γ, a metric

can be defined. The distance between two vertices x, y ∈ V(Γ) is given by the

length of the shortest path joining x with y:

d(x, y) := min
{

len(p) : p joins x with y
}

. (2.4)

The function d : V(Γ) × V(Γ) → N0 defines a metric on V(Γ), cp. [Wei04].

2.2 Definition (Isometries). An isometry from a graph Γ to a graph Γ′ is a

morphism h : Γ → Γ′ such that d is invariant under h, that is d
(
h(x), h(y)

)
=

d(x, y) for all vertices x, y ∈ V(Γ). By Is (Γ) we denote the set of isometries

h : Γ → Γ. Not that every automorphism h ∈ Aut (Γ) is an isometry of Γ.

2.3 Lemma. Isometries h : Γ → Γ′ are injective on the vertex set V(Γ).

Proof. This follows from the fact that d is a metric. If h(x) = h(y) for two

vertices x, y, then d(x, y) = d
(
h(x), h(y)

)
= 0 and therefore x = y.

Infinite paths will be used, too. There is the one-sided version path∞,

which has vertices {0, 1, 2, . . .}. The orientation is given by the edges [i, i + 1],

i ∈ N0, where o([i, i + 1]) = i and t([i, i + 1]) = i + 1 (compare Figure 2.5). A

morphism p from path∞ to a graph Γ is called a ray or more specifically a right

ray. The graph path−∞ has vertices {. . . ,−2,−1, 0}. The orientation is given

by the edges [i, i + 1], i ∈ −N, where o([i, i + 1]) = i and t([i, i + 1]) = i + 1

(compare Figure 2.6). A morphism p from path−∞ to a graph Γ is called a ray

or more specifically a left ray. There is the two-sided version T2, with vertices

Z. The orientation is given by the edges [i, i + 1], i ∈ Z, where o([i, i + 1]) = i



2.3. PATHS, CIRCUITS AND TREES 13

path∞ = r - r - r pp p0 1 2

[0, 1] [1, 2]

Figure 2.5: The oriented graph path∞

path−∞ = p p p - r−2 -
[−2,−1]

r−1 -
[−1, 0]

r0

Figure 2.6: The oriented graph path−∞

and t([i, i + 1]) = i + 1 (confer Figure 2.7). A morphism p from T2 to a graph

Γ is called a bi-infinite path.

T2 = p p p r - r - r - r - r p p p−2 −1 0 1 2

[−2,−1] [−1, 0] [0, 1] [1, 2]

Figure 2.7: The oriented graph T2

Edge sequences and vertex sequences are used for infinite paths in the same

way as for finite paths. Note that a sequence of edges is a function from some

index set to an edge set, a sequence of vertices is a function from some index

set to a vertex set. As for finite paths, the edge sequence of an infinite path

determines the path entirely.

A finite path q will often be called a segment. This terminology is used most

often, when the edge sequence (a1, . . . , ak) of q with length greater than zero

appears in the sequence of a larger path p. If p has length n (I = {1, . . . , n}),
p is a ray (I = N or I = −N) or a bi-infinite path (I = Z) with edge sequence

p = {ei}i∈I , then q is called a segment of p if and only if for some m ∈ Z holds

m + i ∈ I for all i ∈ {1, . . . , k} and then em+i = ai, i = 1, . . . , k. A path q

of length zero is a segment of a path p if the vertex q(0) appears in the vertex

sequence of p.

The oriented graph circn for (n > 0) has n vertices {0, . . . , n − 1} and n
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positive edges [0, 1], . . . , [n− 1, 0], where o([i, i + 1]) = i and t([i, i + 1]) = i + 1

for all i (i mod n). There is a diagram of circn in Figure 2.8. An isomorphic

image of circn is called a circuit. The number n is the length of a circuit. An

isomorphic image of circ1 is also called a loop.

circn :=

r��
�

��
r - r

@
@

@
@R

pp
p

pp
p

�
�

�
�	r�r@

@
@

@I

n − 1

0 1

ii + 1

[n − 1, 0]

[0, 1]

[i, i + 1]

Figure 2.8: The oriented graph circn

A graph Γ is called combinatorial if it has no circuits of length ≤ 2. In this

case, edges e of Γ can be written as ordered pairs of their borders

e =
(
o(e), t(e)

)
. (2.5)

This shall be proved. For all edges of Γ, one has o(e) 6= t(e). Otherwise

[0, 0] 7→ e defines a loop in Γ. If there were two edges a 6= b with the same

borders o(a) = o(b) and t(a) = t(b), then their geometrical edges are disjoint

except possibly b = a or a = b. These cases are impossible because they

imply o(a) = t(a) = t(b) = t(a). Then the geometric edges {a, a} and {b, b}
are disjoint and the graph Γ has a circuit of length two. This contradicts the

assumption that Γ was combinatorial.

Paths in a combinatorial graph can be written through their vertex se-

quence. In equation (2.3) paths have been established as sequences of edges.

Edges can be written as ordered pairs of vertices by equation (2.5). Thus every

path p in a combinatorial graph Γ can be defined by a sequence (x0, . . . , xn) of



2.3. PATHS, CIRCUITS AND TREES 15

vertices where each pair (xi, xi+1) is an edge.

2.4 Lemma. A map F : VΓ 7→ VΓ′ from the vertex set of a graph Γ to the

vertex set of a combinatorial graph Γ′ extends to a unique morphism F̃ : Γ →
Γ′ if and only if F maps adjacent vertices to adjacent vertices. In this case

F̃ |VΓ = F |VΓ. For edges e ∈ EΓ one has F̃ (e) =
(
F

(
o(e)

)
, F

(
t(e)

))
.

Proof. [Wei04]

2.5 Lemma. All isometries h ∈ Is (Γ) of a graph Γ are injective if and only

if Γ is combinatorial.

Proof. [Wei04]

2.6 Definition (Trees). A tree is a non-empty connected graph without cir-

cuits.

By definition, a tree is a combinatorial graph, thus paths can be written as

vertex sequences. For an important class of paths in a tree, there is a more

useful way of writing.

2.7 Definition (Geodesics). A path (x, y, z) written as a vertex sequence is

called a reversal if and only if x = z. A path g in a tree is called a geodesic, if

and only if it has no reversals (as segments).

This definition applies to finite paths as well as to infinite paths. The

condition says that g is a geodesic if and only if g(i) 6= g(i + 2) for all suitable

i (such that i, i + 2 ∈ I) where I = {0, . . . , n}, I = N0, I = −N0 or I = Z

respectively, in the case that g is a finite path, a right ray, a left ray or a

bi-infinite path respectively.

2.8 Proposition. Two vertices in a tree are joined by a unique geodesic. This

geodesic is an injective path.

Proof. There is a very concise proof in [Ser80].

The unique geodesic joining a vertex x to a vertex y in a tree is denoted by

[x, y]. (2.6)
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2.9 Lemma. Suppose T is a tree, x, z ∈ V(T ) and p is a path from x to z.

Then len(p) = d(x, z) if and only if p = [x, z].

Proof. If len(p) = d(x, z) then p is a geodesic, otherwise there is a path from

x to z which has a length shorter than len(p) = d(x, z). By uniqueness follows

p = [x, z]. Conversely, by the definition of the distance d, there is a path q

from x to z of length d(x, z), which is a geodesic by the above paragraph.

By uniqueness or geodesics follows p = [x, z] = q, hence len(p) = len(q) =

d(x, z).



Chapter 3

Lines

Lines as geometrical objects of a tree T are introduced.

Geodesic Segments

A geodesic segment is a finite geodesic, i.e. a finite path g : pathn → T of

length n that has a vertex sequence g(0), . . . , g(n) without reversals. Justified

through Proposition 2.8 the unique geodesic g joining two vertices x and y is

denoted by

g =
[
x, y

]
. (3.1a)

As usually for paths, the vertices of g = [x, y] are written as [x, y](i) for 0 ≤
i ≤ len([x, y]). We say that a vertex x lies on a geodesic segment g (of length

n), if x ∈ {g(0), . . . , g(n)} and write this as

x ∈ g. (3.1b)

The composition of two geodesic segments p, q of lengths n ≥ 0 and m ≥ 0

respectively that satisfy q(0) = p(n) is defined as the path

pq :=





q if n = 0,

p if m = 0,

p(0), . . . , p(n), q(1), . . . , q(m) otherwise.

Directly from Proposition 2.8 and Lemma 2.9, several equivalences are de-

rived [Wei04]. Suppose three vertices x, y, z ∈ V(T ) are given. Equivalent



18 CHAPTER 3. LINES

are

[x, y][y, z] = [x, z],

[x, y][y, z] is a geodesic,

y ∈ [x, z],

d(x, y) + d(y, z) = d(x, z).

(3.1c)

If h ∈ Is (T ) is an isometry and g is a geodesic segment, then the path h(g) =

h◦g is also a geodesic segment, since isometries are injective. From uniqueness

of geodesics follows for all x, y ∈ V(T ) and all isometries h ∈ Is (T )

h
(
[x, y]

)
=

[
h(x), h(y)

]
. (3.1d)

Geodesic Right-Rays

A geodesic right-ray is an infinite path r : path∞ → T that has a vertex

sequence r = (r(0), r(1), r(2), . . .) without reversals, i.e where r(i) 6= r(i + 2)

for all i ∈ N0. The space of geodesic right-rays is denoted by R∞.

The relative boundary of a tree T with respect to a given vertex x ∈ VT is

the set of geodesic right-rays

Tx(∞) =
{
r ∈ R∞ : r(0) = x

}

that have origin r(0) = x.

3.1 Definition (Ideal Boundary of a Tree). The ideal boundary of a tree is

defined as the classes of an equivalence relation:

T (∞) := R∞/∼.

Two geodesics right-rays r and s are equivalent, if and only if they have the

infinite intersection property, which requires constants k1, k2 ∈ N0 such that

r(k1 + l) = s(k2 + l) holds for all l ∈ N0.

The projection ω : R∞ → T (∞) is called the future. For each fixed vertex

x ∈ T the restriction ω|Tx(∞) is a bijection from the relative boundary Tx(∞)

of x to the ideal boundary T (∞).

ω|Tx(∞) :
Tx(∞) −→ T (∞)

r 7−→ [r] ∈ T (∞) = R∞/∼.
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A proof can be found in [Wei04]. The identification will be used to write

geodesic right-rays in terms of a vertex and a boundary point. For each vertex

x ∈ T and each boundary point ξ ∈ T (∞),

r =
[
x, ξ

)
(3.2a)

denotes the the unique geodesic right-ray r with origin r(0) = x and future

ω(r) = ξ. The ray r is called the ray from x to ξ. As usually, vertices of

r = [x, ξ) are written as [x, ξ)(i) for i ∈ N0.

A vertex x ∈ V(T ) is said to lie on a right-ray r if x ∈
{
r(0), r(1), . . .

}
,

which will be denoted by

x ∈ r. (3.2b)

The composition gr of a geodesic segment g of length n ≥ 0 and a geodesic

right-ray r that satisfy r(0) = g(n) is defined as the path

gr :=





r if n = 0,

g(0), . . . , g(n), r(1), r(2), . . . otherwise.

For all x, y ∈ V(T ) and all boundary points ξ ∈ T (∞) hold the following

equivalences

[x, y][y, ξ) = [x, ξ),

[x, y][y, ξ) is a geodesic right-ray,

y ∈ [x, ξ).

(3.2c)

Proof of (3.2c). The downward implications are trivial. For an implication

from the third to the first statement we put (r0, r1, r2, . . .) := [x, ξ) for the

vertex sequence of [x, ξ). If y ∈ [x, ξ) then y = ri for some i ∈ N0. Thus

[x, y] = (r0, . . . , ri) and [y, ξ) = (ri, ri+1, . . .). The composition [x, y][y, ξ) has

thus the same vertex sequence as [x, ξ), hence the two rays are equal.

It was shown in [Wei04] that isometries h ∈ Is (T ) induce maps R∞ → R∞

and they preserve the equivalence classes of R∞, so that they induce maps

h : T (∞) → T (∞). Further it was shown that they commute with the future

map, i.e. ω
(
h(r)

)
= h

(
ω(r)

)
for all isometries h ∈ Is (T ) and all geodesic

right-rays r. It follows then h
([

r(0), ω(r)
))

= h(r) =
[
h(r)(0), ω

(
h(r)

))
=

[
h
(
r(0)

)
, h

(
ω(r)

))
. This can be expressed by

h
[
x, ξ

)
=

[
h(x), h(ξ)

)
(3.2d)
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for all isometries h ∈ Is (T ), all x ∈ V(T ) and all ξ ∈ T (∞).

Geodesic Left-Rays

A geodesic left-ray is an infinite path l : path−∞ → T that has a vertex

sequence l = (. . . , l(−2), l(−1), l(0)) without reversals, i.e where l(i − 2) 6= l(i)

for all i ∈ −N0. The space of geodesics left-rays is denoted by L∞.

Note that the space of geodesic left rays L∞ is in a one-to-one correspon-

dence with the space or geodesic right-rays. If r is a right-ray, then l defined

by l(i) := r(−i) for all i ∈ −N0 defines a geodesic left-ray and vice versa.

Thus the properties of geodesic right-rays carry over to corresponding prop-

erties for geodesic left rays. The concepts need only be translated under the

correspondence between R∞ and L∞.

The (anti)-projection α : L∞ → T (∞) defined for geodesic left-rays l as

α(l) := ω
(
l(0), l(−1), l(−2), . . .

)
is called the past. For each vertex x ∈ T and

each boundary point η ∈ T (∞),

l =
(
η, x

]
(3.3a)

denotes the the unique geodesic left-ray l with terminus l(0) = x that has past

α(l) = η. The ray l is called the ray from η to x. As usually, vertices of

l = (η, x] are written as (η, x](i) for i ∈ −N0. However we will most often write

[x, η)(i) for the vertex (η, x](−i) for i ∈ N0.

A vertex x ∈ V(T ) is said to lie on a left-ray l if x ∈
{
l(0), l(−1), . . .

}
,

which will be denoted by

x ∈ l. (3.3b)

The composition lg of a geodesic left-ray l and a geodesic segment g of length

n ≥ 0 that satisfy g(0) = l(0) is defined as the path

lg :=





l if n = 0,

. . . , l(−1), l(0), g(1), . . . , g(n) otherwise.

For all x, y ∈ V(T ) and all boundary points η ∈ T (∞) hold the following
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equivalences.

(η, x][x, y] = (η, y],

(η, x][x, y] is a geodesic left-ray,

x ∈ (η, y].

(3.3c)

For all isometries h ∈ Is (T ), all x ∈ V(T ) and all η ∈ T (∞) holds

h
(
η, x

]
=

(
h(η), h(x)

]
. (3.3d)

Bi-infinite Lines

A bi-infinite geodesic is a bi-infinite path g : T2 → T that has a vertex sequence

. . . , g(−1), g(0), g(1), . . . without reversals, i.e. g(i) 6= g(i+2) for all i ∈ Z. The

set of all bi-infinite geodesics is denoted by G and is called the geodesic space

(of T ). There is an invertible shift operator L : G → G defined for geodesics g

by
(
L(g)

)
(i) := g(i + 1), i ∈ Z.

The operator L acts on G because for g ∈ G all shifted geodesics Ln(g) also

pertain to G for all n ∈ Z. More generally, the shift operator L acts on the

space P of all bi-infinite paths (not necessarily geodesics) in T . The velocity

V(g) of a geodesic g ∈ G is defined by a function

V :
G −→ T (∞) × T (∞)

g 7−→
(
α(g), ω(g)

)
.

(3.4)

It consists of two boundary points; α(g) := α
(
. . . , g(−1), g(0)

)
is the past of

the denoted left-ray and ω(g) := ω
(
g(0), g(1), . . .

)
is the future of the given

right-ray. We call α(g) the past of g and ω(g) the future of g. With the diagonal

∆ :=
{
(γ, γ) : γ ∈ T (∞)

}
the velocity space of T is defined as

VT :=
(
T (∞) × T (∞)

)
− ∆.

Theorem 1. The velocity V is a surjective map G → VT . Each two geodesics

g, h ∈ G that have the same velocity are linked by the shift operator h = Ln(g)

for a unique n ∈ Z. There is a bijection G = VT × Z. The velocity V induces

a bijection Ṽ : G/Z −→ VT .
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Proof. Since every geodesic g ∈ G is injective one has ω(g) 6= α(g). Otherwise

the rays
[
g(0), g(1), . . .

)
and

[
g(0), g(−1), . . .

)
had infinite intersection.

For surjectivity of V we may fix a vertex x ∈ V(T ) and two distinct bound-

ary points η 6= ξ. The rays [x, η) and [x, ξ) have no infinite intersection,

thus there is a natural number n ∈ N0 such that
[
x, η

)
(n) =

[
x, ξ

)
(n) and

[
x, η

)
(n + 1) 6=

[
x, ξ

)
(n + 1). Then

g(i) :=





[
x, η

)
(n − i) for i ≤ 0

[
x, ξ

)
(n + i) for i > 0

defines a geodesic g ∈ G with the required property V(g) = (η, ξ).

Let two geodesics g, h ∈ G have the same velocity V(g) = V(h). Since g

and h have the same past, there are integers l1, l2 ≤ 0 with g(l1) = h(l2).

The geodesics have the same future, thus there are integers r1, r2 ≥ 0 with

g(r1) = h(r2). By uniqueness of geodesics (Prop. 2.8) one has [g(l1), g(r1)] =

[h(l2), h(r2)]. The lengths of these paths are equal, which permits to put k :=

l2 − l1 = r2 − r1. A straight calculation (with a selection of three cases) gives

then g(i) = h(i+k) for all i ∈ Z. Thus g = Lk(h). Since geodesics are injective

paths, every vertex of the vertex sequence of g appears only once, so k is unique.

For each velocity v ∈ V we choose a geodesic gv with V(gv) = v. Then

a bijection G → VT × Z is obtained by g 7→
(
V(g), k

)
with the unique k ∈ Z

such that gv = Lk(g). This map is injective by the second statement of the

theorem. Next we shows that V
(
Ln(g)

)
= V(g) for all n ∈ Z. Then it follows

from the first assertion of the theorem, that the map is surjective. One has

ω
(
Ln(g)

)
= ω

(
g(n), g(n + 1), . . .

)
which equals ω(g) = ω

(
g(0), g(1), . . .

)
by

infinite intersection. Similarly α
(
Ln(g)

)
= α(g) for all g ∈ G and all k ∈ Z.

The invariance of V under the shift operator L shows that V is constant on

the orbits of the Z-action of L on G so it induces a map Ṽ : G/Z → VT . The

first statement of this proposition proves that this map is surjective, the second

statement proves that it is injective.

The elements of the velocity space VT are called bi-infinite lines. A bi-

infinite line l ∈ VT is written as

l =
(
η, ξ

)
. (3.5a)
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Any geodesic g ∈ G that has velocity V(g) = l is called a geodesic representing

the line l.

We say a vertex x ∈ V(T ) lies on a bi-infinite line l if and only if x pertains

to the vertex set of some (hence by Theorem 1 every) geodesic g with velocity

l. This will be denoted as

x ∈ l. (3.5b)

When a geodesic left-ray l and a geodesic right-ray satisfy r(0) = l(0) then

the composition lr is defined: a bi-infinite path p is given as p(i) := l(i) for i ≤ 0

and p(i) = r(i) otherwise. The composition is then defined as the projection

of p to the orbit of p under the action of the shift operator L.

lr := pZ ∈ P/Z.

For all boundary points η 6= ξ and all vertices x ∈ V(T ) hold the following

equivalences.

(η, x][x, ξ) = (η, ξ),

(η, x][x, ξ) is a bi-infinite line,

x ∈ (η, ξ).

(3.5c)

Proof of (3.5c). Recall from Eqn. (3.5a) that the symbol (η, ξ) is reserved for

bi-infinite lines (and implies η 6= ξ). The statement (η, x][x, ξ) = (η, ξ) says

that the composition of (η, x] with [x, ξ) equals the line (η, ξ) ∈ G/Z ⊂ P/Z. In

particular, the composition is a bi-infinite line.

For the next step, we recapitulate the definition of the composition. It is

given by the orbit under the shift operator L of the bi-infinite path p defined

as p(i) := [x, η)(i) for i ≤ 0, and as p(i) := [x, ξ)(i) otherwise. Note that the

action of L on P preserves the geodesic space, i.e. L(G) ⊂ G. So, since the

composition is a line, p is a bi-infinite geodesic. Obviously p represents the line

(η, ξ). Since x is a vertex of p this shows x ∈ (η, ξ).

If x ∈ (η, ξ) then there is a bi-infinite geodesic g with past α(g) = η, with

future ω(g) = ξ and such that x = g(k) for some k ∈ Z. By Theorem 1 we can

assume that k = 0. It follows from Eqn. (3.3a) and Eqn. (3.2a) by uniqueness

of geodesic rays that (η, x] =
(
. . . , g(−1), g(0)

]
and [x, ξ) =

[
g(0), g(1), . . .

)
.

So the path p that appears in the definition of the composition of the rays (η, x]

and [x, ξ) equals g. Since g represents the line (η, ξ), the proof is finished.
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For all isometries h ∈ Is (T ) and all boundary points η 6= ξ holds

h(η, ξ) =
(
h(η), h(ξ)

)
. (3.5d)

Proof of (3.5d). We have to show that for every geodesic g representing (η, ξ)

hold hα(g) = hη and hω(g) = ω(η). One has hα(g) = hα(η, g(0)] = hη as well

as hω(g) = hω[g(0), ξ) = hξ.

Lines in a Tree

The distinct types of lines introduced so far have very similar behavior. This

allows a unification. For symbols x,y ∈ T ∪ T (∞) such that y 6= x whenever

x,y ∈ T (∞) we use the notation

〈x,y〉 (3.6a)

to refer with the ordered symbols x,y in angle brackets ’〈’ and ’〉’ to the cor-

responding definition (3.1a), (3.2a), (3.3a) or (3.5a). This means that 〈x,y〉
stands for the

geodesic segment [x,y] if x,y ∈ T ,

geodesic right-ray [x,y) if x ∈ T and y ∈ T (∞),

geodesic left-ray (x,y] if x ∈ T (∞) and y ∈ T ,

bi-infinite line (x,y) if x,y ∈ T (∞).

In all cases the object 〈x,y〉 is called a line in T .

We simply copy the remaining concepts from the different types of lines. A

vertex z is said to lie on a line 〈x,y〉 if

z ∈ 〈x,y〉. (3.6b)

For all symbols x,y ∈ VT ∪ T (∞) (maybe equal boundary points) and all

vertices z ∈ V(T ) there is a composition

〈x, z][z,y〉

such that the following statements are equivalent for all x,y ∈ T ∪ T (∞) and

all z ∈ V(T ).

〈x, z][z,y〉 = 〈x,y〉,
〈x, z][z,y〉 is a line,

z ∈ 〈x,y〉.
(3.6c)
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For all isometries h ∈ Is (T ) and all lines 〈x,y〉 holds

h
(
〈x,y〉

)
=

〈
h(x), h(y)

〉
. (3.6d)

When we work in a situation where it is clear whether two symbols x,y ∈
T ∪ T (∞) are vertices or boundary points, we will use the old notation with

squared brackets ’[’ and ’]’ and parenthesis ’(’ and ’)’. In particular, we will

often keep writing [x,y] for geodesic segments, [x,y) for right-rays, (x,y] for

left-rays and (x,y) for bi-infinite lines. The expression [x,y〉 is used, when

x ∈ T and there is no specification about y ∈ T ∪T (∞). Similarly we will use

〈x,y].

The vertex set of a line 〈x,y〉 is defined as the set of vertices that lie on

this line. We will always state explicitly when a relation for vertex sets of lines

is considered, because a line has more information as its vertex set.

3.2 Proposition. For the vertex sets of lines hold the following relations (not

for the lines themselves!). Let z ∈ V(T ) and 〈x,y〉 be a line. Then

〈x,y〉 = 〈y,x〉,
z ∈ 〈x,y〉 if and only if [z,y〉 ⊂ 〈x,y〉,

if z ∈ 〈x,y〉 then 〈x, z] ∪ [z,y〉 = 〈x,y〉,
if z ∈ 〈x,y〉 then 〈x, z] ∩ [z,y〉 = {z}

Proof. The first assertion is trivial. The leftward arrow of the second assertion

is obvious. If z ∈ 〈x,y〉 then by Eqn. 3.6c holds 〈x,y〉 = 〈x, z][z,y〉. So the

result [z,y〉 ⊂ 〈x,y〉 follows directly from the definition of the composition.

From there follows also the third assertion. The last statement is a consequence

of injectivity of geodesics.

3.3 Corollary. If 〈x,y〉 is a line and c, a, b ∈ 〈x,y〉 then c 6∈ [a, b] implies

c ∈ [a,x〉 ∩ [b,x〉 or c ∈ [a,y〉 ∩ [b,y〉.

Proof. We use Proposition 3.2. Since a ∈ 〈x,y〉, one has 〈x,y〉 = [a,x〉∪ [a,y〉.
Since b ∈ 〈x,y〉, it follows then that b ∈ [a,x〉 or b ∈ [a,y〉. Thus, after possibly

relabeling a ↔ b one can assume that 〈x,y〉 = 〈x, a][a, b][b,y〉 is a line. The

assumption c 6∈ [a, b] allows then two cases, c ∈ 〈x, a] or c ∈ [b,y〉. The proof is
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finished by observing that 〈x, a] ⊂ 〈x, a][a, b] = 〈x, b] and [b,y〉 ⊂ [a, b][b,y〉 =

[a,y〉.



Chapter 4

Triangles

A triangle in a tree T is defined as an ordered tuple (x,y, z) consisting of

three points x,y, z ∈ T ∪ T (∞) such that no two of the points are coinciding

boundary points. The lines 〈x,y〉, 〈y, z〉 and 〈z,x〉 are called the sides of the

triangle (x,y, z).

4.1 Lemma (Bifurcation Lemma). We assume that ∆ = (x,y, z) is a triangle

in a tree T . The intersection 〈x,y〉 ∩ 〈y, z〉 ∩ 〈z,x〉 of the three sides of ∆

consists of a single vertex b(∆) = b(x,y, z) ∈ T .

Proof. For existence of b(∆), we look in a first step for a vertex p, which lies on

the two lines 〈x,y〉 and 〈z,y〉. Such a vertex is always found. If y is a vertex,

then the choice p = y is sufficient. If y is a boundary point, then 〈x,y〉 and

〈z,y〉 have infinite intersection. Any choice of p in this intersection is valid.

Commencing with p, a vertex in the intersection of the three sides of ∆ can be

constructed inductively: If 〈x, p][p, z〉 is a line, then p lies on the side 〈x, z〉,
too. Otherwise [p,x〉(1) = [p, z〉(1) and this vertex lies on the lines 〈y,x〉 and

〈y, z〉 since p does. Inductively we assume that [p,x〉(n) = [p, z〉(n) and that

this vertex lies on the lines 〈y,x〉 and 〈y, z〉. If 〈x, [p,x〉(n)][[p, z〉(n), z〉 is a

line, then [p, z〉(n) lies on the side 〈x, z〉 and the proof of existence is finished.

If the composition if not a line, then

[
p,x

〉
(n + 1) =

[
[p,x〉(n),x

〉
(1) =

[
[p, z〉(n), z

〉
(1) =

[
p, z

〉
(n + 1)

and this vertex lies on 〈y,x〉 and on 〈y, z〉 as the vertex p does.
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In the case that for n = 0, 1, 2, . . . none of the vertices [p, z〉(n) lies on 〈x, z〉
then there are identities [p,x〉(n + 1) = [p, z〉(n + 1) for n = 0, 1, 2, . . .. These

identities show that the geodesics [p,x〉 and [p, z〉 have infinite lengths and

infinite intersection, so x, z ∈ T (∞) and x = z. This case was excluded in the

definition of a triangle.

To establish uniqueness of a vertex that lies on the three sides of a trian-

gle ∆, we assume s and t were two candidates. It can be assumed that 〈x, z〉 =

〈x, s][s, t][t, z〉. Then both equations 〈y,x〉 = 〈y, t][t,x〉 = 〈y, t][t, s][s,x〉 and

〈y, z〉 = 〈y, s][s, z〉 = 〈y, s][s, t][t, z〉 hold. By uniqueness of geodesics, we can

therefore substitute 〈y, s] = 〈y, t][t, s] = 〈y, s][s, t][t, s]. The path [s, t][t, s] as

a geodesic is injective, hence must have length zero. This shows s = t.

4.2 Definition (Bifurcations). Given a triangle ∆ =
(
x,y, z

)
, the vertex

b
(
∆

)
= b

(
x,y, z

)
identified in the Bifurcation Lemma, is called the bifurcation

of the triangle ∆ or the bifurcation of x, y and z.

4.3 Note. For every triangle (x,y, z) and each permutation σ ∈ S3 holds

b
(
σ(x), σ(y), σ(z)

)
= b(x,y, z).

4.4 Example (Bifurcations).

• For a fixed vertex x ∈ T , a metric was defined [Wei04] on the ideal

boundary of a tree by

dx(η, ξ) :=





0 if η = ξ

e−d(x,b(x,η,ξ)) otherwise.

for boundary points η, ξ ∈ T (∞).

• For a fixed boundary point γ ∈ T (∞) a horocycle distance will be defined

in Chapter 7 for vertices x, y ∈ T by

Bγ(x, y) := d(y, b(x, y, γ)) − d(x, b(x, y, γ)).

4.5 Definition (Sub-lateral triangles). Two triangles ∆S and ∆T of a tree

shall have sides S1, S2, S3 and T1, T2, T3 respectively. The triangle ∆S is called

sub-lateral to ∆T , if S1 ⊂ T1, S2 ⊂ T2 and S3 ⊂ T3. Sometimes we will

abbreviate that ∆S is sub-lateral to ∆T by writing ∆S < ∆T .
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X

Z

Y

x = y = z

Figure 4.1: Each side of the triangle ∆1 = (x, y, z) (consisting of a single

vertex x = y = z ∈ T ) is included in some side of a triangle ∆2 = (X,Y,Z)

(for X,Y,Z ∈ T ). In fact, all sides of ∆1 are included in [X,Y ] and in [Y,Z].

Since there is no side of ∆1, that is included in [Z,X], the triangle ∆1 is not

sub-lateral to ∆2. Proposition 4.6 does not apply. Indeed, ∆1 and ∆2 have

different bifurcations.

Triangles of a tree can be compared. The following Proposition displays a

useful property of sub-lateral triangles. This feature fails under a weaker form

of “inclusion” for triangles. See Figure 4.1 for an example.

4.6 Proposition (Sub-lateral triangles).

• If ∆S and ∆T are two triangles in a tree and ∆S is sub-lateral to ∆T

then b(∆S) = b(∆T ).

• The bifurcation b(∆) of a triangle ∆ = (x,y, z) is a projection in the

sense that b
(
b(∆),y, z

)
= b(∆).

Proof. Bifurcations of triangles are unique and

{b(∆S)} = S1 ∩ S2 ∩ S3 ⊂ T1 ∩ T2 ∩ T3 = {b(∆T )}.

(The notation is borrowed from the definition of sub-lateral triangles.)

For the second statement, one has
[
b(∆),y

〉
⊂ 〈x,y〉 and

〈
z, b(∆)

]
⊂ 〈z,x〉

by definition of b(∆). This shows that
(
b(∆),y, z

)
< (x,y, z). The first

statement of this proposition implies now b
(
b(∆),y, z

)
= b(x,y, z).

4.7 Example (The bifurcation as a projection). We consider a triangle ∆ =



30 CHAPTER 4. TRIANGLES

(x,y, z) in a tree.

b(∆)
Prop.4.6

= b
(
b(∆),y, z

) Prop.4.6
= b

(
b(∆), b

(
b(∆),y, z

)
, z

)

= b
(
b(∆), b(∆), z

) Prop.4.6
= b

(
b(∆), b(∆), b

(
b(∆), b(∆), z

))

= b
(
b(∆), b(∆), b(∆)

)
.

For isometries h we define the image of a triangle ∆ = (x,y, z) under h as

the triangle

h(∆) := (hx, hy, hz).

4.8 Proposition (Commutation of bifurcations). If ∆ is a triangle in a tree

and and h is an isometry then b
(
h(∆)

)
= h

(
b(∆)

)

Proof. Say ∆ = (x,y, z). By definition b(∆) ∈ 〈x,y〉. Thus h
(
b(∆)

)
∈

h
(
〈x,y〉

)
. This line equals by Eqn. (3.6d) the line

〈
h(x), h(y)

〉
. Similarly

one shows that h
(
b(∆)

)
∈

〈
h(y), h(z)

〉
and h

(
b(∆)

)
∈

〈
h(z), h(x)

〉
. Then the

Bifurcation Lemma shows that h
(
b(∆)

)
= b

(
h(∆)

)
.

Given a triangle ∆ = (x,y, z), the set

V(∆) := 〈x,y〉 ∪ 〈y, z〉 ∪ 〈z,x〉

is called the vertex set of ∆.

4.9 Lemma (Partition of triangles). We assume that ∆ = (x,y, z) is a triangle

in a tree. Then

(a)
[
b(∆),x

〉
= 〈y,x〉 ∩ 〈z,x〉

(b)
[
b(∆),x

〉
∩

[
b(∆),y

〉
=

{
b(∆)

}

(c) V(∆) \
{
b(∆)

}
=

([
b(∆),x

〉
\

{
b(∆)

})
⊔

([
b(∆),y

〉
\

{
b(∆)

})

⊔
([

b(∆), z
〉
\

{
b(∆)

})
.

Proof. In (a), the inclusion from left to right comes from Prop. 3.2, since b(∆)

lies on both lines 〈y,x〉 and 〈z,x〉. Conversely, we assume that a vertex c lies

on 〈y,x〉 and on 〈z,x〉 but c 6∈
[
b(∆),x

〉
then c ∈

〈
z, b(∆)

]
because c ∈ 〈z,x〉.

This shows that c ∈ 〈z,y〉 and thus c = b(∆), a contradiction.

The assertion (b) follows directly from Prop. 3.2 because b(∆) ∈ 〈x,y〉.
To verify (c), note that V(∆) =

[
b(∆),x

〉
∪

[
b(∆),y

〉
∪

[
b(∆), z

〉
because

b(∆) lies on all three sides of ∆. If the union is not disjoint, then a vertex c is
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in two of the involved sets, say c ∈
[
b(∆),x

〉
∩

[
b(∆),y

〉
. This implies by part

(b) of this lemma that c = b(∆).

The distance of a vertex x to a line l = 〈y, z〉 is defined as

d(x, l) := min
y∈l

{
d(x, y)

}
.

4.10 Lemma (Distance to a Line). For each vertex x and each line l = 〈y, z〉
holds d

(
x, b(x,y, z)

)
= d(x, l). The bifurcation b(x,y, z) is the unique vertex

of l in minimal distance to x.

Proof. By well-ordering of the natural numbers, at least one vertex z ∈ l is

in distance d(x, z) = d(x, l) to x. If
[
z, x

]
(1) =

[
z,y

〉
(1) then

[
z, x

]
(1) is also

a vertex of l with a distance to x smaller than d(x, z), a contradiction. Thus

[x, z][z,y〉 is a geodesic. By the same arguments is z ∈ [x, z〉. This shows

z = b(x,y, z).
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Quadrilaterals

A quadrilateral is an ordered quadruple A = (1A, 2A, 3A, 4A) consisting of four

points 1A, 2A, 3A, 4A ∈ T ∪ T (∞) such that no two of these points are coin-

ciding boundary points. We emphasize the indices of points rather than the

quadrilateral A, since they will become more important later on. We denote

by TQ the set of all quadrilaterals of a tree T . A quadrilateral A has four

bifurcations

b(1)A := b(2A, 3A, 4A), b(2)A := b(1A, 3A, 4A),

b(3)A := b(1A, 2A, 4A) and b(4)A := b(1A, 2A, 3A).

5.1 Mappings by Isometries and Permutations

For this section it is convenient to think of a quadrilateral A as a sequence

(iA)i∈{1,2,3,4} or likewise as a map A : {1, 2, 3, 4} 7→ T ∪ T (∞). For subsets

S ⊂ {1, 2, 3, 4} we use the notation A(S) := A|S , the restriction of A to S,

which equals as a sequence

A(S) = (iA)i∈S .

Since the bifurcation of a triangle does not depend on the ordering of the points,

the bifurcations of a quadrilateral can be written as

b(i)A = b
(
A({1, 2, 3, 4} − i)

)

for all i ∈ {1, 2, 3, 4}.
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5.1 Definition (Isometric Image of a Quadrilateral). For every quadrilateral

A and each isometry h ∈ Is (T ) we define

h(A) :=
(
h(1A), h(2A), h(3A), h(4A)

)
,

that is ih(A) = h(iA) for all i ∈ {1, 2, 3, 4}. Clearly h(A) is a quadrilateral by

injectivity of isometries. This definition can be rewritten in the interpretation

of A as a map like h(A) = h ◦ A, which allows for an action of Is (T ) on the

space of quadrilaterals, if Is (T ) is a group.

5.2 Proposition. For each quadrilateral A ∈ TQ and each isometry h ∈ Is (T )

holds b(i)h(A) = h
(
b(i)A

)
for i ∈ {1, 2, 3, 4}.

Proof. One has

b(i)h(A) = b
(
h(A)({1, 2, 3, 4} − i)

)
= b

(
h ◦ A({1, 2, 3, 4} − i)

)

Prop. 4.8
= h

(
b
(
A({1, 2, 3, 4} − i)

))

= h
(
b(i)A

)
.

5.3 Corollary. For each isometry h ∈ Is (T ) and each quadrilateral A ∈ TQ

holds d
(
b(i)h(A), b(j)h(A)

)
= d

(
b(i)A, b(j)A

)
for i, j ∈ {1, 2, 3, 4}.

Proof. One has

d
(
b(i)h(A), b(j)h(A)

)
Prop. 5.2

= d
(
h
(
b(i)A

)
, h

(
b(j)A

))

= d
(
b(i)A, b(j)A

)
.

5.4 Definition (Action of S4 on the Space of Quadrilaterals). For any per-

mutation σ ∈ S4 and any quadrilateral A ∈ TQ, a quadrilateral

σ(A) :=
(
σ−1(1)A, σ−1(2)A, σ−1(3)A, σ−1(4)A

)
∈ TQ

is defined. The definition can be written as iσ(A) = σ−1(i)A for all i ∈
{1, 2, 3, 4}. In terms of A as a map, the assignment reads σ(A) = A ◦ σ−1

and defines therefore an action of S4 on the space of quadrilaterals.

5.5 Proposition. For all quadrilaterals A ∈ TQ and all permutations σ ∈ S4

holds b(i)σ(A) = b
(
σ−1(i)

)
A

for all i ∈ {1, 2, 3, 4}.
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Proof. One has

b
(
σ−1(i)

)
A

= b

(
A

(
{1, 2, 3, 4} − σ−1(i)

))

= b

(
A

(
σ−1{1, 2, 3, 4} − σ−1(i)

))
= b

(
A ◦ σ−1({1, 2, 3, 4} − i)

)

= b(i)σ(A).

5.6 Proposition. Isometries h ∈ Is (T ) commute with the action of permuta-

tions σ ∈ S4 on quadrilaterals A ∈ TQ in the sense that σ ◦ h(A) = h ◦ σ(A).

Proof. For all i ∈ {1, 2, 3, 4} holds

iσ◦h(A) = σ−1(i)h(A) = h
(
σ−1(i)A

)

= h(iσ(A)) = ih◦σ(A).

5.2 The Klein Type of a Quadrilateral

In this section we provide a partition of the set of quadrilaterals TQ into four

classes depending on equalities of the four bifurcations. For an easier nota-

tion the indices 1, 2, 3, 4 of a quadrilateral A will be confused with the objects

1A, 2A, 3A, 4A ∈ T ∪ T (∞). The section is concluded with an investigation

of how a permutation of the points of a quadrilateral and a mapping by an

isometry affects the classes of quadrilaterals.

5.7 Lemma. If (1, 2, 3, 4) is a quadrilateral and b(2, 3, 4) = b(1, 3, 4) then

b(1, 2, 4) = b(1, 2, 3).

Proof. If we take z = b(2, 3, 4) = b(1, 3, 4) then [z, 2〉 ⊂ 〈3, 2〉 and [z, 1〉 ⊂
〈3, 1〉. This shows (z, 2, 1) < (3, 2, 1). On the other hand one has [z, 2〉 ⊂
〈4, 2〉 and [z, 1〉 ⊂ 〈4, 1〉 and therefore (z, 2, 1) < (4, 2, 1). Altogether, from

Proposition 4.6 follows b(3, 2, 1) = b(z, 2, 1) = b(4, 2, 1).

5.8 Proposition. We assume that A = (1, 2, 3, 4) is a quadrilateral. In the

case that b(2, 3, 4) 6= b(1, 3, 4), all four bifurcations of A lie on the line 〈2, 1〉.
Moreover 〈2, 1〉 =

〈
2, b(2, 3, 4)

][
b(2, 3, 4), b(1, 3, 4)

][
b(1, 3, 4), 1

〉
.
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Proof. Both vertices b(2, 3, 4) and b(1, 3, 4) lie on 〈3, 4〉. After possibly relabel-

ing 3 and 4 we can assume that

(*) 〈3, b(2, 3, 4)][b(2, 3, 4), b(1, 3, 4)][b(1, 3, 4), 4〉

is a line. By (*), [b(2, 3, 4), b(1, 3, 4)][b(1, 3, 4), 4〉 is a line. The composition

〈2, b(2, 3, 4)][b(2, 3, 4), b(1, 3, 4)][b(1, 3, 4), 4〉 is a line by the definition of the

bifurcation b(2, 3, 4). This shows that 〈2, b(2, 3, 4)][b(2, 3, 4), b(1, 3, 4)] is a line.

On the other hand, (*) implies that 〈3, b(2, 3, 4)][b(2, 3, 4), b(1, 3, 4)] is a

line. The composition 〈3, b(2, 3, 4)][b(2, 3, 4), b(1, 3, 4)][b(1, 3, 4), 1〉 is a line by

the definition of the bifurcation b(1, 3, 4). Thus [b(2, 3, 4), b(1, 3, 4)][b(1, 3, 4), 1〉
is a line.

Since the length of the segment
[
b(2, 3, 4), b(1, 3, 4)

]
is positive, the whole

composition

〈2, b(2, 3, 4)][b(2, 3, 4), b(1, 3, 4)][b(1, 3, 4), 1〉

is a line, hence equals 〈2, 1〉. This shows b(2, 3, 4), b(1, 3, 4) ∈ 〈2, 1〉. The

remaining bifurcations lie on 〈2, 1〉 by definition.

Theorem 2. Every quadrilateral has two pairs of coinciding bifurcations.

Proof. In the case that three bifurcations of a quadrilateral A = (1, 2, 3, 4) are

mutually distinct, we may assume after possibly relabeling symbols, that

b(2, 3, 4) 6= b(1, 3, 4),

b(1, 3, 4) 6= b(1, 2, 4),

and b(1, 2, 4) 6= b(2, 3, 4).

An application of Proposition 5.8 to the three inequalities shows that all four

bifurcations lie on each of the lines

〈2, 1〉, 〈3, 2〉 and 〈1, 3〉.

Now the Bifurcation Lemma states that these four bifurcations are all equal to

b(1, 2, 3). This is a contradiction.

It is clear now that the bifurcations of A form a set of vertices with cardi-

nality at most two. It follows from the “pigeon hole principle” [Aig97] that at

least two of them must be equal. Lemma 5.7 concludes that the remaining two

are also equal.
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5.9 Definition (Centered Quadrilaterals). A quadrilateral is called centered,

if all its bifurcations are equal.

5.10 Corollary. For each quadrilateral A ∈ TQ holds exactly one of the fol-

lowing conditions.

(a) b(4)A = b(3)A 6= b(2)A = b(1)A

(b) b(4)A = b(2)A 6= b(3)A = b(1)A

(c) b(4)A = b(1)A 6= b(3)A = b(2)A

(d) A is centered.

Proof. If not all four bifurcations coincide (case (d)), then by Theorem 2 ex-

actly one of the remaining bifurcations equals b(4)A (cases (a) to (c)). The

two other bifurcations are equal among themselves.

5.11 Definition (Bifurcation Type). A quadrilateral satisfying case (a) of

Corollary 5.10 is called a quadrilateral of type (a). The analogue definitions

are set for the remaining cases of the Corollary. The condition that two quadri-

laterals have the same type is clearly an equivalence relation on any set S ⊂ TQ

of quadrilaterals. The equivalence classes are called type classes. The collection

of type classes of S is denoted by Tb(S). We write

πb : S −→ Tb(S)

for the projection to the type class.

Once written the classification for quadrilaterals in Corollary 5.10 it will

turn out that the action of S4 on quadrilaterals is precisely described by the

Klein 4-group. The Klein 4-group V is the subgroup of S4 that consists of

the elements V = {Id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} in cycle notation. See

Appendix A for further information.

5.12 Proposition. For sets of quadrilaterals S ⊂ TQ there is a map

Kl : S −→ V

defined as Kl(A) := Id if A ∈ S is centered. If A is not centered then Kl(A) :=

(j k)(l m) for pairwise distinct numbers j, k, l,m ∈ {1, 2, 3, 4} such that b(j)A =

b(k)A and b(l)A = b(m)A.
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bifurcation type (a) (b) (c) (d)

Klein type (1 2)(3 4) (1 3)(2 4) (1 4)(2 3) Id|V

Figure 5.1: The correspondence between the bifurcation type and the Klein

type of quadrilaterals.

The function Kl induces an injective function K̂l : Tb(S) → V such that

K̂l ◦ πb(A) = Kl(A).

Proof. We show first that Kl is well defined. For centered quadrilaterals this

is clear. If A ∈ S is of type (a) then it satisfies by definition the relations

b(4)A = b(3)A 6= b(2)A = b(1)A.

The possible values for Kl(A) would be (1 2)(3 4), (2 1)(3 4), (1 2)(4 3) and

(2 1)(4 3). They all coincide as permutations, so there is a unique group element

Kl(A) ∈ V assigned to A. Similarly Kl(A) = (1 3)(2 4) for all quadrilaterals A

of type (b) and Kl(A) = (1 4)(2 3) for all quadrilaterals A of type (c).

Since the conditions on a quadrilateral A for the assignment of Kl(A) only

depend on the bifurcation type of A, Kl is constant on the equivalence classes

Tb(S). Thus a function K̂l
(
πb(A)

)
:= Kl(A) can be defined. Obviously the

value Kl(A) determines the bifurcation type of A. Thus Kl(A) = Kl(B) implies

πb(A) = πb(B). So πb(A) 7→ Kl(A) = K̂l
(
πb(A)

)
is injective.

5.13 Definition (Klein Type). The permutation Kl(A) ∈ V assigned in Propo-

sition 5.12 is called Klein type of a quadrilateral A ∈ TQ. Note that K̂l is in-

vertible on its image so there is a correspondence between the bifurcation type

and the Klein type of quadrilaterals as displayed in Figure 5.1.

Images of Quadrilaterals under Isometries

The Klein type is invariant under isometries.

5.14 Corollary. For all quadrilaterals A ∈ TQ and all isometries h ∈ Is (T )

holds Kl
(
h(A)

)
= Kl(A).
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Proof. By Corollary 5.3 holds d
(
b(i)h(A), b(j)h(A)

)
= d

(
b(i)A, b(j)A

)
for all

i, j ∈ {1, 2, 3, 4}. Hence the bifurcation types of A and h(A) are the same. So

are the Klein types by definition.

Action of S4 on Quadrilaterals

Unlike under a mapping by an isometry, the type of a quadrilateral is changed

by the action of S4 on the points of the quadrilateral.

5.15 Definition. A set S of quadrilaterals is called closed under S4 if S4(S) =

{σ(s) : σ ∈ S4, s ∈ S} = S.

5.16 Note. The focus on spaces of quadrilaterals S that are closed under S4 is

not a restriction on the applicability of the following results. The assumption

must by taken if a map s 7→ σ(s) shall be defined for s ∈ S and σ ∈ S4. Note

also that TQ is closed under S4 since the group acts on TQ. The reason for

an emphasize on subsets S ⊂ TQ is the aim of working with quadrilaterals of

boundary points in Chapter 9. These spaces are closed under S4, too.

Recall from Proposition A.2 that S4 acts on V by conjugation.

(σ, τ) 7−→ α
(
σ
)
(τ) := στσ−1 (5.1)

for all σ ∈ S4, τ ∈ V .

Theorem 3. If S ⊂ TQ is closed under S4 then for all σ ∈ S4 the diagram

S
Kl−−−−→ V

σ

y
yα(σ)

S −−−−→
Kl

V

commutes, that is Kl ◦ σ = α(σ) ◦ Kl.

Proof. Assume that A ∈ S is a quadrilateral and choose σ ∈ S4. In the case that

A is centered then Kl(A) = Id and σ(A) is centered, i.e. Kl(σA) = Kl(A) = Id.

Thus α(σ) ◦ Kl(A) = α(σ)(Id) = σIdσ−1 = Id = Kl ◦ σ(A).

In the case that A is not centered, then for some τ ∈ S4 there are relations

among the bifurcations of A

b
(
τ(4)

)
A

= b
(
τ(3)

)
A
6= b

(
τ(2)

)
A

= b
(
τ(1)

)
A
.
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(Confer Corollary 5.10.) This shows that Kl(A) =
(
τ(4) τ(3)

)(
τ(2) τ(1)

)
. An

application of Proposition 5.5 gives

b
(
στ(4)

)
σ(A)

= b
(
στ(3)

)
σ(A)

6= b
(
στ(2)

)
σ(A)

= b
(
στ(1)

)
σ(A)

.

A comparison gives

Kl ◦ σ(A) =
(
στ(4)στ(3)

)(
στ(2)στ(1)

)

Prop. A.2
= σ

(
τ(4) τ(3)

)(
τ(2) τ(1)

)
σ−1 = σKl(A)σ−1

= α(σ) ◦ Kl(A).

5.17 Corollary. The Klein type is invariant under the Klein 4-group, i.e.

Kl(σA) = Kl(A) for all quadrilaterals A ∈ TQ and all σ ∈ V .

Proof. We apply Theorem 3 to the set S = TQ. For σ ∈ V and A ∈ TQ

holds Kl
(
σ(A)

)
= α(σ)

(
Kl(A)

)
= σKl(A)σ−1 = σσ−1Kl(A) = Kl(A) since V

is abelian.

5.18 Lemma. If A ∈ TQ, then for σ = (2 3 4) holds

Kl(σA) =





(1 3)(2 4) if Kl(A) = (1 2)(3 4)

(1 4)(2 3) if Kl(A) = (1 3)(2 4)

(1 2)(3 4) if Kl(A) = (1 4)(2 3).

In particular, if S ⊂ TQ is closed under S4 and S has a non-centered quadri-

lateral then it has quadrilaterals of all three non-centered types.

Proof. This follows directly from Theorem 3.

5.19 Proposition. If S ⊂ TQ is closed under S4 then S4 acts on Tb(S) by

(σ,C) 7−→ β(σ)(C) for σ ∈ S4 and C ∈ Tb(S) such that the diagram

S
πb−−−−→ Tb(S)

σ

y
yβ(σ)

S −−−−→
πb

Tb(S)

commutes, that is β(σ) ◦ πb = πb ◦ σ.
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Proof. For σ ∈ S4 a map β(σ) : Tb(S) → Tb(S) is defined by β(σ)
(
πb(A)

)

:= πb

(
σ(A)

)
. To prove the validity of this definition, it has to be verified

for any two quadrilaterals A,B ∈ S that πb(A) = πb(B) implies πb(σA) =

πb(σB). Let σ ∈ S4 and A,B ∈ S. The equality πb(A) = πb(B) implies

K̂l ◦ πb(A) = K̂l ◦ πb(B), which is equivalent to Kl(A) = Kl(B). Theorem 3

shows that Kl(σA) = σKl(A)σ−1 = σKl(B)σ−1 = Kl(σB), which is equivalent

to K̂l ◦πb(σA) = K̂l ◦πb(σB). By Proposition 5.12 the function K̂l is injective,

so that πb(σA) = πb(σB).

It remains to show that β is a homomorphism of groups. This implies then

bijectivity of β(σ) for all σ ∈ S4, so that β is indeed a homomorphism to the

group Perm
(
Tb(S)

)
. We choose two group elements σ, τ ∈ S4. Then for any

A ∈ S holds β(σ)β(τ)
(
πb(A)

)
= β(σ)πb

(
τ(A)

)
= πb

(
στ(A)

)
= β(στ)

(
πb(A)

)

because S4 acts on S.

5.20 Corollary. If a set S ⊂ TQ is closed under S4 then for all σ ∈ S4 the

diagram

Tb(S)
cKl−−−−→ V

β(σ)

y
yα(σ)

Tb(S) −−−−→
cKl

V

commutes, i.e. α(σ) ◦ K̂l = K̂l ◦ β(σ).

Proof. For all quadrilaterals A ∈ S holds

α(σ) ◦ K̂l
(
πb(A)

) Prop. 5.12
= α(σ) ◦ Kl(A)

Theorem 3
= Kl ◦ σ(A)

Prop. 5.12
= K̂l ◦ πb ◦ σ(A)

Prop. 5.19
= K̂l ◦ β(σ)

(
πb(A)

)
.

5.21 Corollary. If S ⊂ TQ is closed under S4 then ker(β) = V if and only if

S has a non-centered quadrilateral. Otherwise ker(β) = S4.

Proof. For σ ∈ S4, the condition σ ∈ ker(β) is equivalent to β(σ)
(
πb(A)

)
=

πb(A) for all A ∈ S. By injectivity of K̂l (Prop. 5.12) this is equivalent to

K̂l ◦ β(σ) ◦ πb(A) = K̂l ◦ πb(A) for all A ∈ S. By Theorem 3 this is equivalent

to the condition

α(σ)
(
Kl(A)

)
= Kl(A)
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for all A ∈ S. Two cases shall be distinguished. If S has a non-centered quadri-

lateral then it has quadrilaterals of all three non-centered types (Lemma 5.18).

So the last condition is equivalent to the condition α(σ)(a) = a for all a ∈ V

(note that α(σ)(IdV ) = σIdV σ−1 = σσ−1 = IdV holds for all σ ∈ S4.) So this

is equivalent to α(σ) = IdAut(V ) which is true if and only if σ ∈ ker(α) = V

(Prop. A.3).

In the case that all quadrilaterals A ∈ S are centered then above condition

is equivalent to α(σ)(IdV ) = IdV , which is true for all σ ∈ S4.

5.3 The Inner Diameter of a Quadrilateral

The inner diameter of a quadrilateral A is defined as the integer number

diam(A) := max
i,j∈{1,2,3,4}

d
(
b(i)A, b(j)A

)
.

5.22 Proposition. If A is a quadrilateral then

•
(
diam(A) = 0

)
⇐⇒

(
A is centered

)
.

• If diam(A) > 0 then for all i, j ∈ {1, 2, 3, 4} holds(
b(i)A 6= b(j)A

)
⇐⇒

(
d
(
b(i)A, b(j)A

)
= diam(A)

)
.

Proof. The first assertion is trivial. We assume that diam(A) > 0. In the

case d
(
b(i)A, b(j)A

)
= diam(A) > 0 one has b(i)A 6= b(j)A. Conversely, if

d
(
b(i)A, b(j)A

)
< diam(A) then there is a pair k, l of numbers with b(k)A 6=

b(l)A such that

d
(
b(i)A, b(j)A

)
< d

(
b(k)A, b(l)A

)
.

In the case that b(i)A 6= b(j)A we can assume by Theorem 2 that b(i)A =

b(k)A (after possibly relabeling k and l). This implies that b(j)A = b(l)A and

contradicts above inequality.

5.23 Corollary. For each isometry h ∈ Is (T ) and each quadrilateral A holds

diam
(
h(A)

)
= diam(A).

Proof. This follows directly from the definition of the inner diameter and Corol-

lary 5.3.

5.24 Corollary. For all σ ∈ S4 and all A ∈ TQ holds diam
(
σ(A)

)
= diam(A).
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Proof. If A is centered then σ(A) is centered and both diameters are zero.

If A is not centered then b(i)A 6= b(j)A for two i, j ∈ {1, 2, 3, 4}. Since by

Proposition 5.5 holds b
(
σ(k)

)
σ(A)

= b(i)A for all k, Proposition 5.22 gives

diam
(
σ(A)

)
= d

(
b
(
σ(i)

)
σ(A)

, b
(
σ(j)

)
σ(A)

)
= d

(
b(i)A, b(j)A

)
= diam(A).

5.25 Corollary. For all quadrilaterals A ∈ TQ and all σ ∈ S4 holds the

equation d
(
b
(
σ(1)

)
A
, b

(
σ(2)

)
A

)
= d

(
b
(
σ(3)

)
A
, b

(
σ(4)

)
A

)
.

Proof. Since b
(
σ(i)

)
A

= b(i)σ−1(A) for i = 1, 2, 3, 4 by Prop. 5.5, it remains

to show that d
(
b(1)B , b(2)B

)
= d

(
b(3)B , b(4)B

)
for the quadrilateral B :=

σ−1(A). From Theorem 2 follows that b(1)B = b(2)B ⇒ b(3)B = b(4)B and

that b(1)B 6= b(2)B ⇒ b(3)B 6= b(4)B . In the second case Proposition 5.22

gives d
(
b(1)B , b(2)B

)
= diam(B) = d

(
b(3)B , b(4)B

)
.

5.4 Alternate Aspects of the Klein Type

A second and a third description of the Klein type of quadrilaterals are set up.

They will smooth the way for a description of the Klein type by integers.

Theorem 4. If (1, 2, 3, 4) ∈ TQ is a quadrilateral and 〈1, 2〉 ∩ 〈3, 4〉 6= ∅ then

〈1, 2〉 ∩ 〈3, 4〉 =
[
b(1, 3, 4), b(2, 3, 4)

]
as an equality of vertex sets.

Proof. We show that 〈1, 2〉∩〈3, 4〉 ⊂
[
b(1, 3, 4), b(2, 3, 4)

]
. Let c ∈ 〈1, 2〉∩〈3, 4〉

and assume that c 6∈
[
b(1, 3, 4), b(2, 3, 4)

]
. Then by Corollary 3.3 one of the

cases c ∈
[
b(1, 3, 4), 3

〉
∩

[
b(2, 3, 4), 3

〉
or c ∈

[
b(1, 3, 4), 4

〉
∩

[
b(2, 3, 4), 4

〉
is true.

Since the statement does not change under a relabeling 3 ↔ 4 we can assume

that c ∈
[
b(1, 3, 4), 3

〉
and c ∈

[
b(2, 3, 4), 3

〉
. From the first inclusion follows

c ∈ 〈1, 3〉, from the second one c ∈ 〈2, 3〉. Since we took c ∈ 〈1, 2〉 it follows that

c = b(1, 2, 3). The assumption c 6∈
[
b(1, 3, 4), b(2, 3, 4)

]
implies c 6= b(1, 3, 4)

and c 6= b(2, 3, 4) and by Theorem 2 follows c = b(1, 2, 4). This shows that

c ∈ 〈1, 4〉. Together with c ∈ 〈1, 3〉 and c ∈ 〈3, 4〉 follows the contradiction

c = b(1, 3, 4).

We show that
[
b(1, 3, 4), b(2, 3, 4)

]
⊂ 〈1, 2〉 ∩ 〈3, 4〉 if 〈1, 2〉 ∩ 〈3, 4〉 6= ∅. To

this end we prove first that
(
〈1, 2〉 ∩ 〈3, 4〉 6= ∅

)
⇒

(
b(1, 3, 4) ∈ 〈1, 2〉

)
. Then

〈1, 2〉 = 〈2, 1〉 as a vertex set implies that both bifurcations b(1, 3, 4), b(2, 3, 4)
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lie on 〈1, 2〉. Thus
[
b(1, 3, 4), b(2, 3, 4)

]
⊂ 〈1, 2〉 by uniqueness of geodesics. The

inclusion
[
b(1, 3, 4), b(2, 3, 4)

]
⊂ 〈3, 4〉 is obvious.

In the case that b(1, 3, 4) 6∈ 〈1, 2〉 Theorem 2 gives b(1, 3, 4) = b(2, 3, 4) and

b(1, 2, 3) = b(1, 2, 4), because the last mentioned bifurcations lie on 〈1, 2〉. From

the first part of this theorem follows 〈1, 2〉 ∩ 〈3, 4〉 ⊂ S :=
[
b(1, 3, 4), b(2, 3, 4)

]

and 〈3, 4〉 ∩ 〈1, 2〉 ⊂ T :=
[
b(1, 2, 3), b(1, 2, 4)

]
as an equation of vertex sets.

Since both S and T have cardinality one they are equal. This shows that

(1, 2, 3, 4) is centered. In particular b(1, 3, 4) = b(1, 2, 3) ∈ 〈1, 2〉.

5.26 Corollary. We assume that (1, 2, 3, 4) ∈ TQ. Then

1) 〈1, 2〉 ∩ 〈3, 4〉 = ∅ ⇔ b(1, 2, 3) = b(1, 2, 4) 6= b(1, 3, 4) = b(2, 3, 4).

2) 〈1, 2〉 ∩ 〈3, 4〉 6= ∅

⇔ 〈1, 2〉 ∩ 〈3, 4〉 =
[
b(1, 3, 4), b(2, 3, 4)

]
=

[
b(1, 2, 3), b(1, 2, 4)

]

as a vertex set

⇔
[
b(1, 3, 4), b(2, 3, 4)

]
=

[
b(1, 2, 3), b(1, 2, 4)

]

as a vertex set

⇔
{
b(1, 3, 4), b(2, 3, 4)

}
=

{
b(1, 2, 3), b(1, 2, 4)

}
.

3)
∣∣〈1, 2〉 ∩ 〈3, 4〉

∣∣ = 1 ⇔ (1, 2, 3, 4) is centered.

4)
∣∣〈1, 2〉 ∩ 〈3, 4〉

∣∣ ≥ 2

⇔ b(1, 3, 4) 6= b(2, 3, 4) ⇔ b(1, 2, 3) 6= b(1, 2, 4).

Proof. Theorem 2 shows “⇒” for 1) because b(1, 2, 3), b(1, 2, 4) ∈ 〈1, 2〉 and

b(1, 3, 4), b(2, 3, 4) ∈ 〈3, 4〉. The first implication “⇒” for 2) comes from The-

orem 4. The following two implications “⇒” for 2) are obvious. The first

statement F1 of 1) and the first statement F2 of 2) are alternatives. The sec-

ond statement L1 of 1) and the last statement L2 of 2) are contradictorily.

Thus one can prove L1 ⇒ F1 by contradiction

(L1 ∧ ¬F1) ⇒ (L1 ∧ F2) ⇒ (L1 ∧ L2).

Similarly L2 ⇒ F2 is proved

The implication “⇒” for 3) follows from part 2) because the segments be-

tween the bifurcations are equal and have length zero. If (1, 2, 3, 4) is centered
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Kl(A) bifurcation intersection
condition condition

(1 2)(3 4) b(1) = b(2) 6= b(3) = b(4) 〈1, 2〉 ∩ 〈3, 4〉 = ∅
(1 3)(2 4) b(1) = b(3) 6= b(2) = b(4) 〈1, 3〉 ∩ 〈2, 4〉 = ∅
(1 4)(2 3) b(1) = b(4) 6= b(2) = b(3) 〈1, 4〉 ∩ 〈2, 3〉 = ∅

Id b(1) = b(2) = b(3) = b(4)
∣∣〈σ(1), σ(2)

〉
∩

〈
σ(3), σ(4)

〉∣∣ = 1

for some or for all σ ∈ S4

Figure 5.2: The Klein type of a quadrilateral A is characterized by the bifurca-

tion configuration and by intersections of lines. The abbreviations i := iA and

b(i) := b(i)A are used for i = 1, 2, 3, 4.

then by 1) is 〈1, 2〉 ∩ 〈3, 4〉 6= ∅. Hence by 2) the intersection has only one

vertex.

The implication “⇒” for 4) follows from part 2) because the segments be-

tween the bifurcations have positive lengths. Conversely, each of the inequali-

ties implies by 1) that 〈1, 2〉∩〈3, 4〉 is non-empty, hence 2) finishes the claim.

5.27 Corollary. The characterizations of the Klein type as displayed in Fig-

ure 5.2 is true.

Proof. In comparison to the classification of the Klein type with the bifurca-

tion type (Figure 5.1) the cases of Corollary 5.10 correspond to the cases of

intersection of lines by Corollary 5.26, 1) and 3).

We write a last characterization of the Klein type of quadrilaterals (1, 2, 3, 4)

according to intersection properties of the lines 〈1, 2〉 and 〈3, 4〉 only. See Fig-

ure 5.4 for diagrams.

5.28 Corollary. The properties claimed in Figure 5.3 are true.

Proof. For the upper table, an affirmation in a rectangle is partitioned into

the exclusive sub-cases that are stated in the underneath rectangles. Only two

doubts can arise. The fact that 〈1, 2〉 ∩ 〈3, 4〉 6= ∅ implies 〈1, 2〉 ∩ 〈3, 4〉 =
[
b(1, 3, 4), b(2, 3, 4)

]
as a vertex set is the content of Theorem 4. If b(1, 3, 4) 6=

b(2, 3, 4) then the ordering of these bifurcations in the line 〈1, 2〉 is determined
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(1, 2, 3, 4) is a quadrilateral

〈1, 2〉 ∩ 〈3, 4〉 = ∅ 〈1, 2〉 ∩ 〈3, 4〉 6= ∅
m

〈1, 2〉 ∩ 〈3, 4〉 = [x, y]

as a vertex set for x = b(1, 3, 4), y = b(2, 3, 4)

x 6= y x = y

then 〈1, 2〉 = 〈1, x][x, y][y, 2〉
〈3, 4〉 〈3, 4〉
= 〈3, x][x, y][y, 4〉 = 〈3, y][y, x][x, 4〉

(i) (ii) (iii) (iv)

m m m m
(1 2)(3 4) (1 3)(2 4) (1 4)(2 3) Id

Figure 5.3: The top table involves only conditions on the two lines 〈1, 2〉, 〈3, 4〉
and on their intersection. The affirmation in each rectangle is partitioned

into the exclusive sub-cases that are stated in the underneath rectangles. The

bottom table displays the cases of Klein type of quadrilaterals. These cases are

in the indicated correspondence to the cases of the top table.

by Proposition 5.8. So the four cases provide a partition of the set of all

quadrilaterals.

We compare the cases of this table to the cases of Figure 5.2. Literally, the

intersection condition on Klein type (1 2)(3 4) equals (i) and the intersection

condition on Klein type Id is equivalent to (iv). So these cases cover the

same set of quadrilaterals. For all other quadrilaterals A we take as in the

figure x = b(1, 3, 4) and y = b(2, 3, 4). In case (ii) Proposition 5.8 shows that

x = b(1, 2, 3) so that Kl(A) = (1 3)(2 4). The proposition show also that case

(iii) implies Kl(A) = (1 4)(2 3).
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(i) (ii) (iii) (iv)

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure 5.4: The four distinct cases of intersection between the two lines 〈1, 2〉
and 〈3, 4〉 of a quadrilateral (1, 2, 3, 4) according to Corollary 5.28.

5.5 Orientation and Concordance

5.29 Definition. When A = (1, 2, 3, 4) is a quadrilateral we introduce the

orientation of the lines 〈1, 2〉, 〈3, 4〉 as

~o(1, 2; 3, 4) :=





1 if Kl(1, 2, 3, 4) = (1 3)(2 4),

−1 if Kl(1, 2, 3, 4) = (1 4)(2 3),

0 else.

Sometimes we write ~o(A) := (1A, 2A; 3A, 4A).

5.30 Note. For quadrilaterals (1, 2, 3, 4) holds by Coro. 5.28

~o(1, 2; 3, 4) =





1 if b(1, 3, 4) 6= b(2, 3, 4) and 〈3, 4〉
= 〈3, b(1, 3, 4)][b(1, 3, 4), b(2, 3, 4)][b(2, 3, 4), 4〉,

−1 if b(1, 3, 4) 6= b(2, 3, 4) and 〈3, 4〉
= 〈3, b(2, 3, 4)][b(2, 3, 4), b(1, 3, 4)][b(1, 3, 4), 4〉,

0 if b(1, 3, 4) = b(2, 3, 4).

5.31 Corollary. For all quadrilaterals A and all isometries h ∈ Is (T ) holds

~o
(
h(A)

)
= ~o(A).

Proof. The Klein type is invariant under isometries by Corollary 5.14.

5.32 Proposition. For quadrilaterals A ∈ TQ hold

• ~o
(
σ(A)

)
= ~o(A) for all σ of the Klein 4-group V < S4,

• ~o
(
σ(A)

)
= −~o(A) for σ = (1 2) or σ = (3 4) ∈ S4,

• ~o
(
A

)
+ ~o

(
σ(A)

)
+ ~o

(
σ2(A)

)
= 0 for all cycles σ of length three.
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Proof. Recall from Corollary 5.17 that the Klein type is invariant under per-

mutations of the Klein 4-group whence the first assertion is clear. Theorem 3

states further that Kl
(
σ(A)

)
= σKl(A)σ−1. Thus

(1 2)
(
(1 3)(2 4)

)
(1 2) = (3 4)

(
(1 3)(2 4)

)
(3 4) = (1 4)(2 3),

(1 2)
(
(1 4)(2 3)

)
(1 2) = (3 4)

(
(1 4)(2 3)

)
(3 4) = (1 3)(2 4),

(1 2)
(
Id

)
(1 2) = (3 4)

(
Id

)
(3 4) = Id,

and (1 2)
(
(1 2)(3 4)

)
(1 2) = (3 4)

(
(1 2)(3 4)

)
(3 4) = (1 2)(3 4)

prove the second statement.

First we prove the third statement for the permutation (2 3 4). If A is not

centered, then the set
{
A, σ(A), σ2(A)

}
has by Lemma 5.18 a quadrilateral of

each of the three non-centered types. Thus the desired equation holds. If A

is centered then σ(A) and σ2(A) are centered, so all three terms in the sum

vanish.

To extend the equation from σ = (2 3 4) to all cycles of length three, note

first, that the non-trivial Klein 4-group elements produce

(1 2)(3 4)(2 3 4)(1 2)(3 4) = (1 4 3),

(1 3)(2 4)(2 3 4)(1 3)(2 4) = (4 1 2),

and (1 4)(2 3)(2 3 4)(1 4)(2 3) = (3 2 1).

So the desired identity holds for the cycles on the right-hand side, too: say

σ = (2 3 4) and τ ∈ V then

~o
(
A

)
+ ~o

(
τστ(A)

)
+ ~o

(
τσ2τ(A)

)
= ~o

(
τ(A)

)
+ ~o

(
στ(A)

)
+ ~o

(
σ2τ(A)

)
= 0.

The remaining four cycles of length three are inverse to the four permutations

presented. Since for a cycle σ of length three holds σ−1 = σ2 and σ−2 = σ, the

proof is finished.

5.33 Proposition. If A ∈ TQ is a quadrilateral, 〈1A, 2A〉 ∩ 〈3A, 4A〉 6= ∅ and

B :=
(
b(1A, 3A, 4A), b(2A, 3A, 4A), 3A, 4A

)
then b(i)B = b(i)A for i = 1, 2, 3, 4.

Proof. By Theorem 4 holds [b(2)A, b(1)A] ⊂ 〈1A, 2A〉. Since b(2)A ∈ 〈1A, 3A〉
and b(1)A ∈ 〈2A, 3A〉 one has

(
b(2)A, b(1)A, 3A

)
< (1A, 2A, 3A). Similarly

(
b(2)A, b(1)A, 4A

)
< (1A, 2A, 4A). Thus by Proposition 4.6 hold

b(1B , 2B , 4B) = b
(
b(2)A, b(1)A, 4A

)
= b(1A, 2A, 4A)

and b(1B , 2B , 3B) = b
(
b(2)A, b(1)A, 3A

)
= b(1A, 2A, 3A).
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The projective property of bifurcations mentioned in the same proposition gives

b(1B , 3B , 4B) = b
(
b(1A, 3A, 4A), 3A, 4A

)
= b(1A, 3A, 4A)

and b(2B , 3B , 4B) = b
(
b(2A, 3A, 4A), 3A, 4A

)
= b(2A, 3A, 4A).

5.34 Corollary. If A ∈ TQ and B :=
(
b(1A, 3A, 4A), b(2A, 3A, 4A), 3A, 4A

)

then ~o(B) = ~o(A).

Proof. In the case that 〈1A, 2A〉∩〈3A, 4A〉 6= ∅ this follows from Proposition 5.33

because both quadrilaterals A and B have the same bifurcations, hence the

same type. If 〈1A, 2A〉 ∩ 〈3A, 4A〉 = ∅ then A is of type (1 2)(3 4) by Corol-

lary 5.27. In particular 1B = b(1A, 3A, 4A) = b(2A, 3A, 4A) = 2B . Therefore

b(1)B = b(2B , 3B , 4B) = b(1B , 3B , 4B) = b(2)B whence by the same corollary

B is of type Id or of type (1 2)(3 4).

5.35 Definition (Concordance). For each quadrilateral A ∈ TQ the concor-

dance of the lines 〈1A, 2A〉 and 〈3A, 4A〉 is given by the integer number

[1A, 2A, 3A, 4A] := ~o(A) · diam(A).

Sometimes we write [A] := [1A, 2A, 3A, 4A].

5.36 Note. By Coro. 5.28 the (orientation and hence the) concordance of two

lines 〈1A, 2A〉 and 〈3A, 4A〉 is zero if their intersection [x, y] has at most one

vertex. Otherwise the concordance equals the length of [x, y] in magnitude.

It has positive sign if [x, y] appears in 〈1A, 2A〉 in the same orientation as in

〈3A, 4A〉. If [x, y] appears in 〈1A, 2A〉 in the opposite orientation as in 〈3A, 4A〉
then the concordance is negative. See also Note 5.30.

5.37 Proposition. For all quadrilaterals A ∈ TQ and all isometries h ∈ Is (T )

holds
[
h(A)

]
= [A].

Proof. The orientation is invariant under isometries by Corollary 5.31, the di-

ameter is invariant under isometries by Corollary 5.23.

5.38 Proposition. For all quadrilaterals A ∈ TQ hold

•
[
σ(A)

]
=

[
A

]
for all σ of the Klein 4-group V < S4,
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•
[
σ(A)

]
= −

[
A

]
for σ = (1 2) or σ = (3 4) ∈ S4,

•
[
A

]
+

[
σ(A)

]
+

[
σ2(A)

]
= 0 for all cycles σ of length three.

Proof. By Corollary 5.24 one has diam
(
σ(A)

)
= diam(A) for all permutations

σ ∈ S4. Proposition 5.32 proves the desired relations.

5.39 Lemma. [A] = ~o(A) · d
(
b(1A, 3A, 4A), b(2A, 3A, 4A)

)
.

Proof. It is only to check that diam(A) = d
(
b(1, 3, 4), b(2, 3, 4)

)
in the case that

A is of type (1 3)(2 4) or of type (1 4)(2 3). In these cases one has b(1, 3, 4) 6=
b(2, 3, 4) by Corollary 5.27. Thus Proposition 5.22 shows the equality.

For vertices x, y lying on a line 〈3, 4〉 the concordance takes a simpler form.

5.40 Lemma. If 〈3, 4〉 is a line and x, y ∈ 〈3, 4〉 are vertices then [x, y, 3, 4] =

~o(x, y, 3, 4) · d(x, y).

Proof. If x, y ∈ 〈3, 4〉 then b(x, 3, 4) = x and b(y, 3, 4) = y. The proof is

finished by Lemma 5.39.

5.41 Note. In comparison to Note 5.30 one has for vertices x, y on a line 〈3, 4〉

~o(x, y; 3, 4) =





1 if x 6= y and 〈3, 4〉 = 〈3, x][x, y][y, 4〉,
−1 if x 6= y and 〈3, 4〉 = 〈3, y][y, x][x, 4〉,

0 if x = y.

5.42 Lemma. If 〈3, 4〉 is a line then for each geodesic g representing 〈3, 4〉
one has

[
g(k), g(l), 3, 4

]
= l − k for all k, l.

Proof. By Lemma 5.40 holds
[
g(k), g(l), 3, 4

]
= ~o

(
g(k), g(l), 3, 4

)
·|l−k|. If l = k

both formulas give value zero. If k < l then 〈3, 4〉 = 〈3, g(k)][g(k), g(l)][g(l), 4〉
thus ~o

(
g(k), g(l), 3, 4

)
= 1 and l−k > 0. In the case that l < k one has 〈3, 4〉 =

〈3, g(l)][g(l), g(k)][g(k), 4〉 thus ~o
(
g(k), g(l), 3, 4

)
= −1 and l − k < 0.

5.43 Proposition. For every A ∈ TQ holds
[
b(1, 3, 4)A, b(2, 3, 4)A, 3A, 4A

]
=

[A].

Proof. The orientations of B =
(
b(1, 3, 4)A, b(2, 3, 4)A, 3A, 4A

)
and of A are

the same by Corollary 5.34. If 〈1A, 2A〉 ∩ 〈3A, 4A〉 6= ∅ then B and A have

the same bifurcations by Proposition 5.33 thus they have the same diameter.
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If 〈1A, 2A〉 ∩ 〈3A, 4A〉 = ∅ then A has type (1 2)(3 4) by Corollary 5.27. Then

~o(B) = ~o(A) = 0 proves [B] = [A].

5.44 Corollary. For every A = (1, 2, 3, 4) ∈ TQ hold
[
1, b(2, 3, 4), 3, 4

]
= [A]

and
[
b(1, 3, 4), 2, 3, 4

]
= [A].

Proof. Note that
[
1, b(2, 3, 4), 3, 4

] Prop. 5.43
=

[
b(1, 3, 4), b

(
b(2, 3, 4), 3, 4

)
, 3, 4

]

Prop. 4.6
=

[
b(1, 3, 4), b(2, 3, 4), 3, 4

] Prop. 5.43
= [1, 2, 3, 4]. Hence

[
b(1, 3, 4), 2, 3, 4

]

Prop. 5.38
= −

[
2, b(1, 3, 4), 3, 4

] Prop. 5.38
= −[2, 1, 3, 4] = [1, 2, 3, 4].

5.45 Proposition. For quadrilaterals A ∈ TQ holds [A] = d
(
b(1)A, b(4)A

)
−

d
(
b(1)A, b(3)A

)
.

Proof. By Proposition 5.22 holds diam(A) = d
(
b(i)A, b(j)A

)
if and only if

b(i) 6= b(j). We use the Klein type characterization from Corollary 5.27. If

A is of type (1 2)(3 4) then b(4)A 6= b(1)A 6= b(3)A. Thus d
(
b(1)A, b(4)A

)
−

d
(
b(1)A, b(3)A

)
= 0 = [A]. If A is of type (1 3)(2 4) then b(4)A 6= b(1)A =

b(3)A thus d
(
b(1)A, b(4)A

)
− d

(
b(1)A, b(3)A

)
= diam(A) = [A]. If A is of type

(1 4)(2 3) then b(4)A = b(1)A 6= b(3)A thus d
(
b(1)A, b(4)A

)
−d

(
b(1)A, b(3)A

)
=

−diam(A) = [A]. If A is centered then any distance between bifurcations is

zero, thus the equality is complete.

Recall from Chapter 4 the distance of a vertex x to a line l = 〈y, z〉

d(x, l) := min
y∈l

{
d(x, y)

}
.

5.46 Corollary. For vertices x ∈ V(T ) and lines 〈y, z〉 holds d
(
x, 〈y, z〉

)
=

d
(
x, b(x,y, z)

)
= [x,y, x, z].

Proof. [x,y, x, z]
Prop. 5.45

= d
(
b(y, x, z), b(x,y, x)

)
− d

(
b(y, x, z), b(x,y, z)

)
=

d
(
x, b(x,y, z)

) Lemma 4.10
= d

(
x, 〈y, z〉

)
.



Chapter 6

Pentagons

A pentagon P in a tree T is an ordered 5-tuple (1P , 2P , 3P , 4P , 5P ) of symbols

1P , 2P , 3P , 4P , 5P ∈ T ∪T (∞) such that no two of theses symbols are coinciding

boundary points.

Theorem 5 (Pentagon Equation). For all pentagons P in a tree T holds

[1P , 2P , 4P , 5P ] + [2P , 3P , 4P , 5P ] + [3P , 1P , 4P , 5P ] = 0.

Proof. The equation shall first be shown in the special case that 1P , 2P and

3P are vertices that lie on 〈4P , 5P 〉. We abbreviate P = (x, y, z, 4, 5). So

x, y, z ∈ 〈4, 5〉. Observe that

[x, y, 4, 5] + [y, z, 4, 5] + [z, x, 4, 5] = 0

implies
[
σ(x), σ(y), 4, 5

]
+

[
σ(y), σ(z), 4, 5

]
+

[
σ(z), σ(x), 4, 5

]
= 0

for all σ ∈ S3. The group S3 is generated by the cycles (x y z) and (x y). The

permutation σ = (x y z) plugged into the left-hand side of the second equation

above reads [y, z, 4, 5] + [z, x, 4, 5] + [x, y, 4, 5]. This sum is a reordering of the

left-hand side of the top equation hence is zero. The permutation σ = (x y)

used in the same way gives [y, x, 4, 5]+ [x, z, 4, 5]+ [z, y, 4, 5]. We apply Propo-

sition 5.38 to get [y, x, 4, 5] + [x, z, 4, 5] + [z, y, 4, 5] = −[x, y, 4, 5]− [z, x, 4, 5]−
[y, z, 4, 5] = 0.

By Lemma 5.40 holds

[x, y, 4, 5] + [y, z, 4, 5] + [z, x, 4, 5]

= ~o(x, y, 4, 5) · d(x, y) + ~o(y, z, 4, 5) · d(y, z) + ~o(z, x, 4, 5) · d(z, x).

(6.1)
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If x = y the result comes directly from Proposition 5.38. We can assume that

x, y, z are pairwise distinct. We can also assume that the vertices obey a special

ordering, say

〈4, 5〉 = 〈4, x][x, y][y, z][z, 5〉.

Then ~o(x, y, 4, 5) = ~o(y, z, 4, 5) = +1 and ~o(z, x, 4, 5) = −1. Thus Equa-

tion (6.1) becomes d(x, y) + d(y, z) − d(z, x) = 0. This completes the proof

of the Pentagon Equation for the case 1P , 2P , 3P ∈ 〈4P , 5P 〉.
For a general pentagon P it is b(1P , 4P , 5P ), b(2P , 4P , 5P ), b(3P , 4P , 5P ) ∈

〈4P , 5P 〉 and therefore

[1P , 2P , 4P , 5P ] + [2P , 3P , 4P , 5P ]
Prop. 5.43

=
[
b(1P , 4P , 5P ), b(2P , 4P , 5P ), 4P , 5P

]

+
[
b(2P , 4P , 5P ), b(3P , 4P , 5P ), 4P , 5P

]

= −
[
b(3P , 4P , 5P ), b(1P , 4P , 5P ), 4P , 5P

]

Prop. 5.43
= −[3P , 1P , 4P , 5P ].



Chapter 7

Horocycles

Besides lines, triangles, quadrilaterals and pentagons, horocycles are impor-

tant geometrical objects of a tree. We start by introducing the horocycle dis-

tance1from a vertex x to a vertex y with respect to a boundary point η.

Bη(x, y) := d(y, b(x, y, η)) − d(x, b(x, y, η)) (7.1)

The vertex b(x, y, η) is the bifurcation of the triangle (x, y, η) introduced in

Chapter 4. Notice that by Corollary 5.46 holds

Bη(x, y) = [y, x, y, η] − [x, y, x, η] (7.2)

for all vertices x, y ∈ V(T ) and boundary points η ∈ T (∞).

7.1 Proposition. For all boundary points η ∈ T (∞), vertices x, y, z ∈ VT
and isometries h ∈ Is (T ) hold the relations

Bη(x, x) = 0,

Bη(x, y) = −Bη(y, x),

Bη(x, y) + Bη(y, z) = Bη(x, z),

and Bh(η)

(
h(x), h(y)

)
= Bη(x, y).

(7.3)

Proof. Immediately from the definition, one has Bη(x, x) = 0 and Bη(x, y) =

−Bη(y, x) for all vertices x, y and boundary points η. For a proof of the remain-

ing two rules we use the expression from Eqn (7.2). Since the concordance [·] is

1The horocycle distance defined here has opposite sign compared to [Wei04] in order to

adopt to the nomenclature used in [Bal95].
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invariant under isometries by Prop. 5.37 the bifurcation distance is invariant,

too. To verify the sum rule we calculate

Bη(x, y) + Bη(y, z) = [y, x, y, η] − [x, y, x, η] + [z, y, z, η] − [y, z, y, η]
Theorem 5

= −[x, z, y, η] − [x, y, x, η] + [z, y, z, η]
Prop. 5.38

= [z, y, x, η] + [y, x, z, η] − [x, y, x, η] + [z, y, z, η]
Theorem 5

= [z, x, z, η] − [x, z, x, η] = Bη(x, z).

7.2 Definition (Horocycles). For boundary points η we introduce a relation

on the set of vertices of the tree T :

x ∼η y :⇐⇒ Bη(x, y) = 0.

It follows directly form the sum rule for the horocycle distance (7.3), that this

relation is an equivalence relation. The classes are called horocycles centered

at η ∈ T (∞).

The vertices in Figure 7.1 are labeled by the horocycle distance Bω(x, ·)
from the vertex x. Vertices sharing the same label lie on a horocycle: since

Bω(y, z) = Bω(y, x) + Bω(x, z) = −Bω(x, y) + Bω(x, z), it is clear that the

distance Bω(y, z) is zero if and only if Bω(x, y) = Bω(x, z), i.e. if y and z have

the same label. A horocycle centered at ω may be thought of as the location

of a wave front that propagates from ω with constant velocity over the tree.

ω x
−1 0 1 2 3

0

1

1

2

2

2

2

3

3

3

3

3

3

3

3

Figure 7.1: Horocycles centered at ω ∈ T (∞).
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For vertices that lie on a line to or from a boundary point γ, their γ-

horocycle distance can be expressed more explicitly. We recall the orientation

~o of two lines from Section 5.4. If η 6= ξ are boundary points and two vertices

x, y lie on the line (η, ξ) then obviously b(x, η, ξ) = x and b(y, η, ξ) = y. Thus

in this restriction ~o simplifies to

~o(x, y; η, ξ) =





1 if x 6= y and (η, ξ) = (η, x][x, y][y, ξ),

−1 if x 6= y and (η, ξ) = (η, y][y, x][x, ξ),

0 if x = y.

7.3 Lemma. If (η, ξ) is a bi-infinite line and two vertices x, y lie on (η, ξ)

then

Bη

(
x, y

)
= ~o(x, y; η, ξ) · d(x, y) = [x, y, η, ξ]

and Bξ

(
x, y

)
= −Bη

(
x, y

)
.

If a bi-infinite geodesic g has past α(g) = η then for all integers k, l holds

Bη

(
g(k), g(l)

)
= l − k.

If a bi-infinite geodesic g has future ω(g) = ξ then for all integers k, l holds

Bξ

(
g(k), g(l)

)
= k − l.

Proof. Recall that Bη(x, y) = d
(
y, b(x, y, η)

)
− d

(
x, b(x, y, η)

)
. If x ∈ (η, y],

then x = b(x, y, η). Hence Bη(x, y) = d(y, x) − d(x, x) = d(x, y). In case

that y ∈ (η, x] one has y = b(x, y, η) and obtains Bη(x, y) = d(y, y)− d(x, y) =

−d(x, y). The concordance [x, y, η, ξ] equals ~o(x, y; η, ξ)·d(x, y) by Lemma 5.40.

The second statement follows directly from Proposition 5.38. The remaining

two statements are proved by Lemma 5.42.

7.4 Proposition. Assume γ is a boundary point. Every bi-infinite line l with

past or future γ intersects each horocycle centered at γ in exactly one vertex.

Proof. We fix an γ-horocycle H by x ∈ V(T ) through H =
{
y ∈ V(T ) :

Bγ(x, y) = 0
}
. We choose a bi-infinite geodesic g with past γ and put m :=

Bγ

(
x, g(0)

)
∈ Z. Now by Lemma 7.3 one has for all n ∈ Z

Bγ

(
x, g(n)

)
= Bγ

(
x, g(0)

)
+ Bγ

(
g(0), g(n)

)

= m + (n − 0) = m + n.
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This shows H ∩ g =
{
g(−m)

}
. If a line l has future γ, then l = (α, γ) for some

α ∈ T (∞). The line (γ, α) has the same vertices as l and has past γ. So this

case reduces to the first one.



Chapter 8

The Geodesic Space of a

Tree

The geodesic space G of a tree T consists by definition of all bi-infinite geodesics.

These are bi-infinite paths g : T2 → T without backtracking, which means that

g(i + 2) 6= g(i) for all i ∈ Z. Elements of G shall be called geodesics for

simplicity.

8.1 The Coordinate Space

Theorem 1 suggests a parameterization of G by assigning to any geodesic g the

velocity V(g) ∈ T (∞)×T (∞) and an integer number. It was shown there that

there is an identification of G with

C :=
((

T (∞) × T (∞)
)
− ∆

)
× Z

for ∆ = {(γ, γ) : γ ∈ T (∞)}. The set C is called coordinate space of G. There

is an invertible shift operator L on G defined for geodesics g by

L(g)(i) := g(i + 1).

for all i ∈ Z. A shift along a geodesic g does not change the velocity V(g) =
(
α(g), ω(g)

)
. When a third coordinate shall be assigned to g such that the shift

operator L acts on geodesics by increasing this number by one, then there is
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still a degree of freedom consisting in a translation along g. A reference vertex

will be chosen to fix coordinates. This construction is prepared now.

8.1 Definition (x-coordinates). When a base point x ∈ T is chosen, we define

a map

Xx :
G −→ Z

g 7−→ [x, g(0), α(g), ω(g)].

The integer number Xx(g) is called the x-position of g. Images of the map

κx :
G −→ C
g 7−→

(
V(g),Xx(g)

)

are called x-coordinates of g. The x-coordinates of a geodesic g consist of

the velocity V(g) =
(
α(g), ω(g)

)
from Eqn. (3.4) and the x-position Xx(g) =

[
x, g(0), α(g), ω(g)

]
of g that involves the concordance [·, ·, ·, ·] defined in Sec-

tion 5.5.

Recall from Proposition 5.38 in Section 5.5 and Theorem 5 in Chapter 6

the following relations of the concordance [·, ·, ·, ·] for vertices x, y, z, distinct

boundary points η 6= ξ and isometries h ∈ Is (T ):

[y, x, η, ξ] = −[x, y, η, ξ],

[x, y, η, ξ] + [y, z, η, ξ] = [x, z, η, ξ],

[x, y, ξ, η] = −[x, y, η, ξ],

and
[
h(x), h(y), h(η), h(ξ)

]
= [x, y, η, ξ].

(8.1)

There is an interpretation of the x-position Xx(g) =
[
x, g(0), α(g), ω(g)

]
as

explained in Figure 8.1.

Theorem 6. The map κx is a bijection from the geodesic space G to the coor-

dinate space C for all base points x ∈ VT . The action of Z on the coordinate

space defined as

L̂
k
(η, ξ, n) := (η, ξ, n + k) (8.2)

for k ∈ Z and (η, ξ, n) ∈ C satisfies κx ◦ Lk = L̂
k ◦ κx for all base points

x ∈ VT .

Proof. It was shown in Theorem 1 that for each pair η 6= ξ of boundary points

there exists a geodesic g with velocity V(g) = (η, ξ). It was shown also that
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x

A
A

AK

b(x, η, ξ)

η ξ
−3 −2 −1 0 1 2 3 4 5 6 7 8 9

A
A

AK

g(0)
A

A
AK

h(0)

Figure 8.1: Two geodesics g, h with velocity V(g) = V(h) = (η, ξ) obtain a third

integer coordinate Xx(g) depending on a base point x. By Proposition 5.43

and Lemma 5.39 holds Xx(g) =
[
x, g(0), η, ξ

]
=

[
b(x, η, ξ), g(0), η, ξ

]
=

~o
(
b(x, η, ξ), g(0), η, ξ

)
·d

(
b(x, η, ξ), g(0)

)
. The orientation ~o

(
b(x, η, ξ), g(0), η, ξ

)

assumes the values +1, 0 or 1 depending on how the vertices b(x, η, ξ) and g(0)

are ordered on the line (η, ξ) (compare Note 5.41). Here Xx(g) = −3 and

Xx(h) = 7.

two geodesics g, h with the same velocity (η, ξ) are linked by the shift operator

L through h = Lk(g) for some k ∈ Z. Bijectivity of κx follows therefore from

bijectivity of the map k 7→ X
(
Lk(g)

)
from Z to Z for all geodesics g:

Xx

(
Lk(g)

)
=

[
x,

(
Lk(g)

)
(0), α

(
Lk(g)

)
, ω

(
Lk(g)

)]

=
[
x, g(k), α(g), ω(g)

]

(8.1)
=

[
x, g(0), α(g), ω(g)

]
+

[
g(0), g(k), α(g), ω(g)

]

= Xx(g) +
[
g(0), g(k), α(g), ω(g)

]

Lemma 5.42
= Xx(g) + k.

The result shows that the map κx is indeed a bijection. The action L̂
k
(η, ξ, n) :=

(η, ξ, n + k) of Z on C satisfies L̂ ◦ κx = κx ◦ L:

κx ◦ Lk(g) =
(
V

(
Lk(g)

)
,Xx

(
Lk(g)

))
=

(
V(g),Xx(g) + k

)

= L̂
k(
V(g),Xx(g)

)
= L̂

k ◦ κx(g).

For completeness, a formula expressing a change of the base point and a

formula for the image of a geodesic in x-coordinates under isometries are given.

These formulas will not be used.

8.2 Proposition. For all base points x, y and all elements (η, ξ, n) of the

coordinate space C holds κy ◦ κ−1
x

(
η, ξ, n

)
=

(
η, ξ, n − [x, y, η, ξ]

)
.
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Proof. The velocity of a geodesic does not depend on the base point, so it is

the change in position that has to be calculated. We take two base points x, y.

Xy(g) =
[
y, g(0), η, ξ

] (8.1)
=

[
y, x, η, ξ

]
+

[
x, g(0), η, ξ

]

= [y, x, η, ξ] + Xx(g)
(8.1)
= Xx(g) − [x, y, η, ξ].

8.3 Proposition. For all base points x and all isometries h ∈ Is (T ) the

map hx : C → C defined by hx(η, ξ, n) :=
(
h(η), h(ξ), n +

[
x, h(x), h(η), h(ξ)

])

satisfies hx ◦ κx = κx ◦ h.

Proof. If a geodesic g has velocity (η, ξ) and h is an isometry then h(g) has

velocity
(
h(η), g(ξ)

)
. The position of the geodesic h(g) is given by

Xx

(
h(g)

)
=

[
x, h(g)(0), h(η), h(ξ)

]

(8.1)
=

[
x, h(x), h(η), h(ξ)

]
+

[
h(x), h(g)(0), h(η), h(ξ)

]

(8.1)
=

[
x, h(x), h(η), h(ξ)

]
+ [x, g(0), η, ξ]

=
[
x, h(x), h(η), h(ξ)

]
+ Xx(g).

The following operator will help to simplify arguments in the next section

and in Section 9.3.

8.4 Definition (Parity Operator). There is a bijection p : G → G defined for

g ∈ G by p(g)(i) := g(−i) for all i ∈ Z. The operator p is called the parity

operator. Its action is a special inversion of the velocity of g.

8.5 Lemma. The parity operator p : G → G satisfies p ◦ p = Id|G.

Proof. For every geodesic g ∈ G and all i ∈ Z holds p
(
p
(
g
))

(i) = p
(
g
)
(−i) =

g(i).

8.6 Proposition. The operator p̂ : C → C defined as p̂(η, ξ, n) := (ξ, η,−n)

satisfies κx ◦ p = p̂ ◦ κx for all base points x.
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Proof. Let g be a geodesic in G. Note that α
(
p(g)

)
= ω(g), ω

(
p(g)

)
= α(g)

and p(g)(0) = g(0). Thus

p̂ ◦ κx(g) = p̂
(
α(g), ω(g),Xx(g)

)
=

(
ω(g), α(g),−Xx(g)

)

=
(
ω(g), α(g),−[x, g(0), α(g), ω(g)]

)

(8.1)
=

(
ω(g), α(g), [x, g(0), ω(g), α(g)]

)

=
(
α
(
p(g)

)
, ω

(
p(g)

)
,
[
x, p(g)(0), α

(
p(g)

)
, ω

(
p(g)

)])

= κx ◦ p(g).

8.7 Proposition. One has for all k ∈ Z the equality p ◦ Lk = L−k ◦ p.

Proof. We choose a base point x, a geodesic g ∈ G and put α := α(g), ω := ω(g)

and n := Xx(g). Then

κx ◦ p ◦ Lk(g) = p̂ ◦ L̂
k ◦ κx(g) = p̂ ◦ L̂

k
(α, ω, n)

= p̂(α, ω, n + k) = (ω, α,−n − k) = L̂
−k

(ω, α,−n)

= L̂
−k ◦ p̂(α, ω, n) = L̂

−k ◦ p̂ ◦ κx(g) = κx ◦ L−k ◦ p(g).

Since κx is a bijection, the claim follows.

8.2 Unstable and Stable Manifolds

The unstable manifold U(g) of a geodesic g is defined as

U(g) :=
{
h ∈ G : α(h) = α(g)

}
.

The stable manifold S(g) of a geodesic g is given by

S(g) :=
{
h ∈ G : ω(h) = ω(g)

}
.

These definitions depend only on the past respectively the future of a geodesic.

Thus the manifolds will also be defined by boundary points in the obvious

way. One has U(g) = U
(
α(g)

)
and S(g) = S

(
ω(g)

)
for geodesics g ∈ G. (See

Figure 8.2.)

The strongly unstable manifold US(g) of a geodesic g takes the form

US(g) :=
{

h ∈ G : α(h) = α(g) and Bα(g)

(
h(0), g(0)

)
= 0

}
.



62 CHAPTER 8. THE GEODESIC SPACE OF A TREE

α ω

Figure 8.2: The unstable manifold of α consists of all geodesics that have α as

their past (left). The stable manifold of ω consists of all geodesics that have ω

as their future (right).

The strongly stable manifold SS(g) of a geodesic g is given by

SS(g) :=
{

h ∈ G : ω(h) = ω(g) and Bω(g)

(
h(0), g(0)

)
= 0

}
.

8.8 Proposition (New-Future and New-Past Maps).

For each ξ ∈ T (∞) there is a unique map called the new-future map to ξ

NFut

ξ :
G − U(ξ) −→ S(ξ)

g 7−→ NFut

ξ (g)
(8.3)

such that NFut
ξ (g) ∈ US(g) for each geodesic g in the domain of definition.

For each η ∈ T (∞) there is a unique map called the new-past map to η

NPas

η :
G − S(η) −→ U(η)

g 7−→ NPas

η (g)
(8.4)

such that NPas
η (g) ∈ SS(g) for each geodesic g in the domain of definition.

Proof. To establish the new-future map to a boundary point ξ it is to show

that for every geodesic g ∈ G such that α(g) 6= ξ there is a unique geodesic h

with velocity V(h) =
(
α(g), ξ) such that Bα(g)

(
h(0), g(0)

)
= 0.
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It was shown in Theorem 1 that there are geodesics h with V(h) = (α(g), ξ)

and that two such geodesics are translates of each other by the shift oper-

ator L. One of these geodesics h shall be fixed. By Proposition 7.4 the

geodesic h intersects the horocycle through g(0) in exactly one vertex, say

in h(k). Thus l = k is the unique solution for Bα

(
Ll(h)(0), g(0)

)
= 0 because

Bα

(
Lk(h)(0), g(0)

)
= Bα

(
h(k), g(0)

)
= 0.

As for the new-past map we choose a boundary point η and a geodesic g

such that ω(g) 6= η. Since α
(
p(g)

)
= ω(g) 6= η there is by the first part a

unique geodesic h such that V(h) =
(
ω(g), η

)
and Bα(p(g))

(
h(0),p(g)(0)

)
= 0.

These two conditions are equivalent to the conditions V
(
p(h)

)
=

(
η, ω(g)

)
and

Bω(g)

(
p(h)(0), g(0)

)
= 0. So p(h) is the unique geodesic with the two last-

mentioned properties.

8.9 Proposition. The diagram

G − U(ξ)
NFut

ξ−−−−→ G
p

y
yp

G − S(ξ) −−−−→
NPas

ξ

G

commutes for all boundary points ξ. That is p ◦ NFut
ξ = NPas

ξ ◦ p for all

boundary points ξ.

Proof. We fix a boundary point ξ and a geodesic g with velocity (α, ω) such

that α 6= ξ. First one obtains that V
(
p ◦ NFut

ξ (g)
)

= (ξ, α) = V
(
NPas

ξ ◦ p(g)
)

by Proposition 8.6. We set h1 := p◦NFut
ξ (g) and h2 := NPas

ξ ◦p(g). Since both

geodesics have the same velocity, it is sufficient to prove h1(0) = h2(0). By

Proposition 7.4 this follows from Bα

(
h1(0), h2(0)

)
= 0, which can be verified.

Bα

(
p ◦ NFut

ξ

(
g
)
(0),NPas

ξ ◦ p
(
g
)
(0)

)

(7.3)
= Bα

(
p
(
NFut

ξ (g)
)
(0),p

(
g
)
(0)

)
+ Bα

(
p
(
g
)
(0),NPas

ξ

(
p(g)

)
(0)

)

= Bα

(
NFut

ξ

(
g
)
(0), g(0)

)
+ Bα

(
p
(
g
)
(0),NPas

ξ

(
p(g)

)
(0)

)

= 0 + 0

by the definition of the new-future map NFut
ξ (note that α(g) = α) and the

definition of the new-past map NPas
ξ (note that ω

(
p(g)

)
= α).
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Theorem 7. For all base points x and all boundary points ξ, the map NFut
x,ξ :

C − U(ξ) → C defined as

NFut

x,ξ (α, ω, n) :=





(
α, ξ, n + [x, α, ω, ξ]

)
if ω 6= ξ

(α, ξ, n) if ω = ξ

makes the diagram

G − U(ξ)
κx−−−−→ C − U(ξ)

NFut

ξ

y
yNFut

x,ξ

G −−−−→
κx

C

commute. That is κx ◦NFut
ξ = NFut

x,ξ ◦κx for all base points x and all boundary

points ξ.

Proof. Let g ∈ G − U(ξ) and put h := NFut
ξ (g). These choices shall be writ-

ten as κx(g) =
(
α, ω,Xx(g)

)
for α 6= ξ and κx(h) =

(
α, ξ,Xx(h)

)
such that

Bα

(
h(0), g(0)

)
= 0. We are interested in the integer number Xx(h) − Xx(g)

which equals by definition
[
x, h(k), α, ξ

]
−

[
x, g(k), α, ω

]
for k = 0. We show

in a first step that this expression is independent of k ∈ Z.

[
x, h(k), α, ξ

]
−

[
x, g(k), α, ω

]
−

[
x, h(0), α, ξ

]
+

[
x, g(0), α, ω

]

(8.1)
=

[
h(0), x, α, ξ

]
+

[
x, h(k), α, ξ

]
−

[
g(0), x, α, ω

]
−

[
x, g(k), α, ω

]

(8.1)
=

[
h(0), h(k), α, ξ

]
−

[
g(0), g(k), α, ω

]

Lemma 5.42
= (k − 0) − (k − 0) = 0.

Since Bα

(
h(0), g(0)

)
= 0 it holds for all k ∈ Z

Bα

(
h(k), g(k)

) (7.3)
= Bα

(
h(k), h(0)

)
+ Bα

(
h(0), g(0)

)
+ Bα

(
g(0), g(k)

)

= Bα

(
h(k), h(0)

)
+ Bα

(
g(0), g(k)

)

Lemma 7.3
= (0 − k) + (k − 0) = 0.

Take k ∈ Z such that g(k) = b(α, ω, ξ) ∈ (α, ξ). Since h(k) ∈ (α, ξ) by

definition and since Bα

(
h(k), g(k)

)
= 0 Proposition 7.4 shows that h(k) = g(k).

This allows to calculate

Xx(h) −Xx(g) =
[
x, b(α, ω, ξ), α, ξ

]
−

[
x, b(α, ω, ξ), α, ω

]

Coro. 5.44
= [x, ω, α, ξ] − [x, ξ, α, ω]

Prop. 5.38
= −[x, ω, ξ, α] − [x, ξ, α, ω]

Prop. 5.38
= [x, α, ω, ξ].

if (x, α, ω, ξ) is a quadrilateral. Otherwise ω = ξ, so h = g and therefore

κx(h) = κx(g).
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Theorem 8. For all base points x and all boundary points η, the map NPas
x,ξ :

C − S(η) → C defined as

NPas

x,η (α, ω, n) :=





(
η, ω, n − [x, ω, α, η]

)
if α 6= η

(η, ω, n) if α = η

makes the diagram

G − S(η)
κx−−−−→ C − S(η)

NPas

η

y
yNPas

x,η

G −−−−→
κx

C

commute. That is κx◦NPas
η = NPas

x,η ◦κx for all base points x and all boundary

points η.

Proof. Since κx is invertible one has the identity NPas
x,η = κx◦NPas

η ◦κ−1
x

Prop. 8.9
=

κx ◦ p ◦NFut
η ◦ p ◦κ−1

x = p̂ ◦NFut
x,η ◦ p̂, the last step follows with Proposition 8.6

and Theorem 7. Thus, the images of geodesics (α, ω, n) in x-coordinates under

a new-past map to η ∈ T (∞) (in x-coordinates) can be calculated.

NPas
x,η (α, ω, n) = p̂ ◦ NFut

x,η ◦ p̂(α, ω, n) = p̂ ◦ NFut
x,η (ω, α,−n).

If α 6= η this gives p̂
(
ω, η,−n + [x, ω, α, η]

)
=

(
η, ω, n − [x, ω, α, η]

)
. When

α = η then we get NPas
x,η (α, ω, n) = (α, ω, n).

8.3 The Unit Tangent Bundle

We want to construct a direct analog of the unit tangent bundle of a differen-

tiable manifold. There, the unit tangent bundle is the union of unit tangent

spaces at each point of the manifold. Every unit tangent space at a point q

consists of the set of directions that a curve through q may assume, so it can

be identified with Sd for the d-dimensional case.

In the setting of a tree, the unite tangent space at a vertex z would be the

set of bi-infinite lines that run through z.

8.10 Definition (Unit Tangent Space). The unit tangent space at a vertex

z ∈ VT is defined as the set of lines

T1
zT :=

{
l ∈ VT : z ∈ l

}
.
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A vertex z lies on a bi-infinite line (η, ξ) if and only if it has distance zero

to that line. So by Corollary 5.46 one can write

T1
zT =

{
(η, ξ) ∈ VT : [z, η, z, ξ] = 0

}
. (8.5)

8.11 Definition (Unit Tangent Bundle). The unit tangent bundle of a tree T
is defined as

T1T :=
{

(z, l) : l ∈ T1
zT , z ∈ V(T )

}
.

We define the embedding onto the unit tangent bundle as the map

ς :
G −→ T1T
g 7−→

(
g(0), α(g), ω(g)

)
.

(8.6)

For lines (η, ξ) ∈ VT and vertices x ∈ V(T ) let

(η, ξ)x

denote the unique geodesic with velocity (η, ξ) such that (η, ξ)x(0) = b(x, η, ξ).

Theorem 9. The embedding onto the unit tangent bundle ς : G → T1T is

a bijection. The connection with x-coordinates for base points x ∈ V(T ) to

coordinates of the unit tangent bundle is given by

κx ◦ ς−1(z, η, ξ) =
(
η, ξ, [x, z, η, ξ]

)
(8.7)

for all elements (z, η, ξ) ∈ T1T and by

ς ◦ κ−1
x (η, ξ, n) =

((
η, ξ

)
x
(n), η, ξ

)
(8.8)

for all elements (η, ξ, n) ∈ C.

Proof. At first note that ς(g) ∈ T1T , since g(0) ∈
(
α(g), ω(g)

)
. When a base

point x ∈ V(T ) is chosen, the geodesic space is in bijection to the coordinate

space via the map κx : G → C, κx(g) =
(
α(g), ω(g), [x, g(0), α(g), ω(g)]

)
for

geodesics g ∈ G (Theorem 6).

We define γx : T1T → C by γx(z, η, ξ) :=
(
η, ξ, [x, z, η, ξ]

)
. Since for all g ∈

G holds γx ◦ ς(g) = γx

(
g(0), α(g), ω(g)

)
=

(
α(g), ω(g), [x, g(0), α(g), ω(g)]

)
=

κx(g), one has the identity

γx ◦ ς = κx.
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This shows also that γx has a right inverse, i.e. γx is surjective. A left inverse

for γx is to be found.

Let φx : C → T1T be defined as φx(η, ξ, n) :=
((

η, ξ
)
x
(n), η, ξ

)
. Then for

all (z, η, ξ) ∈ T1T holds the equation φx ◦ γx(z, η, ξ) = φx

(
η, ξ, [x, z, η, ξ]

)
=((

η, ξ
)
x
([x, z, η, ξ]), η, ξ

)
, which implies

φx ◦ γx = Id|T1T ,

if we can show that
(
η, ξ

)
x
([x, z, η, ξ]) = z for all base points x ∈ V(T ) and all

elements (z, η, ξ) ∈ T1T . One has z = (η, ξ)x(n) for some n ∈ Z, so it remains

to show that
[
x,

(
η, ξ

)
x
(n), η, ξ

]
= n.

[
x,

(
η, ξ

)
x
(n), η, ξ

] (8.1)
=

[
x,

(
η, ξ

)
x
(0), η, ξ

]
+

[(
η, ξ

)
x
(0),

(
η, ξ

)
x
(n), η, ξ

]

Lemma 5.42
=

[
x, b(x, η, ξ), η, ξ

]
+ n

Coro. 5.44
=

[
x, x, η, ξ

]
+ n

(8.1)
= n.

In conclusion, γx is invertible, hence ς is invertible and one obtains κx◦ς−1 = γx

as well as ς ◦ κ−1
x = γ−1

x = φx.



Chapter 9

Invariants of the Ideal

Boundary

This chapter considers the behavior of invariants of quadrilaterals of boundary

points of a tree that are available in every tree — thus called universal invari-

ants. Together they comprise exactly the Klein type and the inner diameter of

each quadrilateral. It turns out that there is only one independent invariant

among them. This function is a complete invariant for the full automorphism

group of a regular tree.

9.1 UC = diam− 2 · k(1 3)(2 4) + (
√

2 − 1) · k(1 4)(2 3)

The vector space UI of universal invariants is introduced. It has dimension zero

or three. Besides the base chosen for the definition, two more bases for this

space are introduced that will find applications. In case of dimension three,

the base consisting of Delay, Concordance and the Inner Diameter has (be-

sides the well-sounding names) the advantage that the complete reducibility of

the representation S4 → GL(UI) on the two subspaces spanned by {diam} and

{del, [·]} comes to daylight. The delay del has also a geometrical interpreta-

tion as presented in Section 9.3. The geometrical interpretation of the inner

diameter diam is obvious. The third function in this collection, the concor-

dance [·] will prove to have “nice” algebraic properties as indicated in the last
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chapter. A third base is used to identify a single invariant function UC ∈ UI

that contains the same information about a quadrilateral as the whole function

space UI does.

For trees T we introduce the space of quadrilaterals of boundary points

T ∞
Q := TQ ∩

(
T (∞) × T (∞) × T (∞) × T (∞)

)
.

Clearly T ∞
Q is closed under S4, i.e. S4(T ∞

Q ) = {σ(A) : A ∈ T ∞
Q , σ ∈ S4} = T ∞

Q .

We introduce distance functions T ∞
Q → N0 defined for quadrilaterals A ∈ T ∞

Q

as

Ui,j(A) := d
(
b(i)A, b(j)A

)

for i, j ∈ {1, 2, 3, 4}. These functions have been shown in Corollary 5.3 to be

invariant under isometries: Ui,j(hA) = Ui,j(A) for all quadrilaterals A ∈ T ∞
Q ,

all isometries h ∈ Is (T ) and for i, j ∈ {1, 2, 3, 4}. There are redundancies

(apart from the trivial ones U1,1 = U2,2 = U3,3 = U4,4 = 0 and Ui,j = Uj,i for

i, j ∈ {1, 2, 3, 4})

U1,2 = U3,4, U1,3 = U2,4, and U1,4 = U2,3. (9.1)

by Corollary 5.25. The vector space generated by all distance functions

UI :=
{ 4∑

i=2

λiU1,i : λ2, λ3, λ4 ∈ C

}

is called the space of universal invariant functions on quadrilaterals of boundary

points1.

Theorem 10. If T ∞
Q has quadrilaterals of all three non-centered types then

dim(UI) = 3.

Proof. Say A is of type (1 2)(3 4), B of type (1 3)(2 4) and C of type (1 4)(2 3).

Assume that λ2 · U1,2 + λ3 · U1,3 + λ4 · U1,4 = 0. This equation holds then

necessarily for the quadrilaterals A,B,C as arguments. Thus

0 = λ2 · U1,2(A) + λ3 · U1,3(A) + λ4 · U1,4(A) = (λ3 + λ4) · diam(A).

Similarly 0 = (λ2 + λ4) · diam(B) and 0 = (λ2 + λ3) · diam(C). (See also

Figure 9.1 for the expressions of Ui,j .) The diameters of A,B,C are positive,

1
UI shall not be confused with Plaça Sant Iu in Barcelona, Catalonia.
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so the three equations are equivalent to the equation
0

B

B

B

@

0 1 1

1 0 1

1 1 0

1

C

C

C

A

·

0

B

B

B

@

λ2

λ3

λ4

1

C

C

C

A

=

0

B

B

B

@

0

0

0

1

C

C

C

A

,

that implies λ2 = λ3 = λ4 = 0 because

det

0

B

B

B

@

0 1 1

1 0 1

1 1 0

1

C

C

C

A

= −1 · det

0

@

1 1

1 0

1

A + det

0

@

1 1

0 1

1

A = 2.

This proves that U1,2,U1,3 and U1,4 are linearly independent, hence form a

base for UI.

A ∈ T ∞
Q not centered

type (1 2)(3 4) type (1 3)(2 4) type (1 4)(2 3)

1

2

3

4

b(3) = b(4) b(1) = b(2)

1

2

3

4
b(1)
=
b(3)

b(2)
=
b(4)

1

2

3

4
b(1)
=
b(4)

b(2)
=
b(3)

U1,2(A) 0 diam(A) diam(A)

U1,3(A) diam(A) 0 diam(A)

U1,4(A) diam(A) diam(A) 0

Figure 9.1: The distance functions Ui,j defined as Ui,j(A) = d
(
b(i)A, b(j)A

)

for quadrilaterals A are written in terms of the inner diameter. Confer Propo-

sition 5.22 for a proof of the expressions and Corollary 5.27 for the bifurcation

configurations.

A few combinatorial results on the existence of quadrilaterals should be

gathered now.

9.1 Definition (Geodesic complete trees). A tree is called geodesic complete

if each geodesic segment can be extended to a bi-infinite line.
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9.2 Note. In view of a dynamical system consisting of (G,L), the emphasize

on geodesic complete trees does not hide any difficulties. It rather distracts

attention away from negligible vertices. A vertex that does not lie on a bi-

infinite line has no relevance for the dynamics since it would never be visited.

9.3 Proposition. Assume that T is a geodesic complete tree. Then T ∞
Q con-

tains a quadrilateral of type (1 2)(3 4) if and only if T has two vertices of degree

greater than two. Otherwise all quadrilaterals of T ∞
Q are centered.

Proof. We choose two distinct vertices x 6= y of degree at least three and

consider the segment [x, y] of positive length. There are two vertices z1 6= z2

adjacent to x but not included in [x, y]. There are two vertices z3 6= z4 adjacent

to y but not included in [x, y]. Since T is geodesic complete, four extensions

(1, x][x, y] with z1 ∈ (1, x],

(2, x][x, y] with z2 ∈ (2, x],

[x, y][y, 3) with z3 ∈ [y, 3),

and [x, y][y, 4) with z4 ∈ [y, 4)

can be chosen. It is clear that A := (1, 2, 3, 4) is a quadrilateral: The ray [x, 1)

is uniquely defined by the vertex x and the boundary point 1. Hence 2 = 1

implies z2 = z1. Similarly 3 6= 4. Since [x, y] has positive length, (1, 3), (1, 4),

(2, 3) and (2, 4) are lines. Therefore A := (1, 2, 3, 4) ∈ T ∞
Q .

Moreover [x, y] ⊂ (1, 3) ∩ (2, 4) implies |(1, 3) ∩ (2, 4)| ≥ 2 so that Corol-

lary 5.26 shows that A is not centered. Since x ∈ (1, 2), x ∈ (1, 3) ∩ (2, 3) ∩
(1, 4) ∩ (2, 4) it follows b(1, 2, 3) = x = b(1, 2, 4). Thus Kl(A) = (1 2)(3 4) by

Corollary 5.27.

If T has at most one vertex of degree greater than two we may choose

a quadrilateral A ∈ T ∞
Q . For k :=

[
b(1)A, 2A

)
, l :=

[
b(1)A, 3A

)
and m :=

[
b(1)A, 3A

)
, the vertices k(1), l(1) respectively m(1) are included in the infinite

lines k, l respectively m. These lines are mutually disjoint except for k(0) =

l(0) = m(0) by Lemma 4.9 (c). This shows that b(1)A has degree at least

three. Similarly the remaining bifurcations of A have degree at least three.

Since T has at most one vertex of degree greater than two this shows that A

is centered.

9.4 Corollary. If T is a tree then the following statements are equivalent.
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• T ∞
Q has quadrilaterals of all three non-centered types.

• T ∞
Q has a non-centered quadrilateral.

• dim(UI) = 3.

Otherwise dim(UI) = 0. If T is geodesic complete then a fourth equivalent

condition is that

• T has two vertices of degree greater than two.

Proof. Since T ∞
Q is closed under S4, the first two conditions are equivalent by

Lemma 5.18. If they are wrong then all quadrilaterals of T ∞
Q are centered.

Thus the distance functions Ui,j vanish identically on T ∞
Q , so that UI has di-

mension zero. This proves indirectly that dim(UI) = 3 implies the existence

of a non-centered quadrilateral in T ∞
Q . Conversely, if there are non-centered

quadrilaterals of all three types then dim(UI) = 3 by Theorem 10. The equiv-

alence of the fourth statement is proved in Proposition 9.3.

We check that S4 acts on UI by the assignment (σ, F ) 7→ σ ∗F where σ ∗F

is defined for quadrilaterals A as σ ∗ F (A) := F
(
σ−1(A)

)
.

9.5 Lemma. For all σ ∈ S4 and i, j ∈ {1, 2, 3, 4} holds σ ∗ Ui,j = Uσ(i),σ(j).

Proof. For all quadrilaterals A ∈ T ∞
Q holds

σ ∗ Ui,j(A) = Ui,j(σ
−1A) = d

(
b(i)σ−1A, b(j)σ−1A

)

Prop. 5.5
= d

(
b
(
σ(i)

)
A
, b

(
σ(j)

)
A

)
= Uσ(i),σ(j)(A).

The previous lemma shows that UI is closed under S4, i.e. σ ∗ F ∈ UI for

all σ ∈ S4 and F ∈ UI. Hence this assignment defines a group action of S4 on

UI. We define a map Φ : S4 → Perm(UI) for σ ∈ S4 by

Φ(σ)(F ) := σ ∗ F (9.2)

for all F ∈ UI.

9.6 Proposition. The map Φ is a group homomorphism S4 → GL(UI).
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Proof. We first check that for σ ∈ S4 the map Φ(σ) defined by Φ(σ)F := σ ∗F

for all F ∈ UI is linear. Let F1, F2 ∈ UI, λ1, λ2 ∈ C and put F := λ1F1 + λ2F2.

Then for all A ∈ T ∞
Q holds

Φ(σ)(λ1F1 + λ2F2)(A) = Φ(σ)(F )(A) = σ ∗ F (A)

= F
(
σ−1(A)

)
= λ1F1

(
σ−1(A)

)
+ λ2F2

(
σ−1(A)

)

= λ1σ ∗ F1(A) + λ2σ ∗ F1(A) = λ1Φ(σ)(F1)(A) + λ2Φ(σ)(F2)(A).

Secondly one has for all τ, σ ∈ S4 and F ∈ UI

Φ(τ) ◦ Φ(σ)(F ) = Φ(τ)(σ ∗ F ) = τ ∗ (σ ∗ F ) = (τσ) ∗ F

= Φ(τσ)(F ).

In particular Φ(σ) ◦ Φ(σ−1)(F ) = Φ(σσ−1)(F ) = Φ(Id)(F ) = Id ∗ F = F for

all σ ∈ S4 and all F ∈ UI. Thus Φ(σ) ∈ GL(UI) for all σ ∈ S4. The previous

equation Φ(τ) ◦ Φ(σ) = Φ(τσ) also states that Φ : S4 → GL(UI) is a group

homomorphism.

9.7 Note. Homomorphisms from a group to an operator group of a vector

space are often called representations. We will later in this section make use

of the representation Φ to approach questions about symmetries of universal

invariant functions with tools from Linear Algebra.

We recall the definitions of two invariant functions and introduce a third

one.

diam(A) = max
i,j∈{1,2,3,4}

d
(
b(i)A, b(j)A

)
,

[A] = ~o(A) · diam(A),

del(A) := (2 3) ∗
[
A

]
forA ∈ T ∞

Q .

(9.3)

The inner diameter diam was introduced in Section 5.3, the concordance [·] was

defined in Section 5.5. The function del is called delay.

9.8 Proposition. If dim(UI) = 3 then the functions del, [·], diam form a base

for UI.

Proof. We verify the equations

diam = 1
2 (U1,2 + U1,3 + U1,4),

[·] = U1,4 − U1,3,

and del = U1,4 − U1,2.

(9.4)
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The first equality is clear from Figure 9.1. The second one was shown in

Proposition 5.45. The third equation is true because for all A ∈ T ∞
Q holds

del(A) = (2 3) ∗
[
A

]
=

[
(2 3)A

]

= U1,4

(
(2 3)(A)

)
− U1,3

(
(2 3)(A)

) Lemma 9.5
= U1,4(A) − U1,2(A).

The matrix T transforming coordinates with respect to the vectors del, [·], diam
into coordinates with respect to the base U1,2,U1,3,U1,4 reads thus

T =

0

B

B

B

@

−1 0 1

2

0 −1 1

2

1 1 1

2

1

C

C

C

A

and has determinant 3
2 . This shows that the three functions above indeed form

a base for UI. For completeness we state the inverse transformations

U1,2 = 1
3 (−2del + [·] + 2diam),

U1,3 = 1
3 (del− 2[·] + 2diam),

and U1,4 = 1
3 (del + [·] + 2diam).

(9.5)

The advantage of the base del, [·], diam is that the representation Φ : S4 →
GL(UI) takes a simple form in matrix notation. Observe that S4 is generated

by the cycles (1 2) and (1 2 3 4).

9.9 Proposition. Assume that dim(UI) = 3. Then the matrices of the linear

operators Φ(1 2) ∈ GL(UI) respectively Φ(1 2 3 4) ∈ GL(UI) with respect to the

base del, [·], diam of UI are given by
0

B

B

B

@

1 0 0

−1 −1 0

0 0 1

1

C

C

C

A

respectively

0

B

B

B

@

−1 −1 0

0 1 0

0 0 1

1

C

C

C

A

.

Proof. For all σ ∈ S4 holds σ ∗ diam = diam by Corollary 5.24, so the last

column of both matrices has one at the third row and zero otherwise. One has

(1 2) ∗ [A] =
[
(1 2)A

]
= −[A] for all A ∈ T ∞

Q by Proposition 5.38. Thus the

second column of the matrix of Φ(1 2) is (0,−1, 0)T . Further

(1 2) ∗ del (9.4)
= (1 2) ∗ U1,4 − (1 2) ∗ U1,2

Lemma 9.5
= U2,4 − U2,1

(9.1)
= U1,3 − U1,2 = U1,4 − U1,2 − (U1,4 − U1,3)

(9.4)
= del− [·].
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Thus the first column of Φ(1 2) is (1,−1, 0)T .

(1 2 3 4) ∗ [·] (9.4)
= (1 2 3 4) ∗ U1,4 − (1 2 3 4) ∗ U1,3

Lemma 9.5
= U2,1 − U2,4

(9.1)
= U1,2 − U1,3

= U1,4 − U1,3 − (U1,4 − U1,2) = [·] − del.

Thus the second column of the matrix for Φ(1 2 3 4) equals (−1, 1, 0)T . From

the last formula one obtains

[·] Prop. 5.38
= (1 3)(2 4) ∗ [·] = (1 2 3 4)2 ∗ [·] = (1 2 3 4) ∗ [·] − (1 2 3 4) ∗ del.

Therefore (1 2 3 4) ∗del = (1 2 3 4) ∗ [·]− [·] = −del shows that the first column

of the matrix for Φ(1 2 3 4) is (−1, 0, 0)T .

9.10 Corollary. The functions F ∈ UI that are invariant under all permuta-

tions σ ∈ S4 consist exactly of the subspace generated by the inner diameter

diam.

Proof. This is clear if dim(UI) = 0. Otherwise del, [·], diam form a base for

UI. Since (1 2) and (1 2 3 4) generate S4, the condition that a function F ∈
UI is invariant under S4 is equivalent to the conditions (1 2) ∗ F = F and

(1 2 3 4)∗F = F . By definition (9.2) this is equivalent to
(
Φ(1 2)−Id|UI

)
(F ) = 0

and
(
Φ(1 2 3 4)− Id|UI

)
(F ) = 0. For the introduced base, the operators of these

equations have matrices
0

B

B

B

@

0 0 0

−1 −2 0

0 0 0

1

C

C

C

A

and

0

B

B

B

@

−2 −1 0

0 0 0

0 0 0

1

C

C

C

A

.

Since the matrix
0

@

−2 −1 0

−1 −2 0

1

A

has rank two, the solutions are given by the subspace C · diam.

9.11 Note. Given a group G and a complex vector space V , a representation

G → GL(V ) is called irreducible if there is no proper non-zero subspace W < V ,

that is invariant under all group elements of G. In our case, the previous Corol-

lary shows that 〈diam〉 is the only invariant one-dimensional subspace of UI.

This shows that the representation Φ|〈del,[·]〉 : S4 → GL(〈del, [·]〉) is irreducible.

Moreover UI is the direct sum UI = 〈del, [·]〉 ⊕ 〈diam〉. A representation with
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these properties is called completely reducible. See [FC91] for concepts from

representation theory.

If dim(UI) = 3, another base for UI labeled by V − {Id} will prove useful.

On one hand the base allows to link the action of S4 on UI with the Klein

type. This on the other hand will help to find an invariant function in UI that

contains the same information on quadrilaterals as the whole space UI.

k(1 2)(3 4) := 1
2 (−U1,2 + U1,3 + U1,4),

k(1 3)(2 4) := 1
2 (U1,2 − U1,3 + U1,4),

and k(1 4)(2 3) := 1
2 (U1,2 + U1,3 − U1,4).

(9.6)

for the elements (1 2)(3 4), (1 3)(2 4) and (1 4)(2 3) from the Klein 4-group V .

One can read out of Figure 9.1 the following descriptions for the functions

ka, a ∈ V − Id. For all quadrilaterals A ∈ T ∞
Q holds

ka(A) = diam(A) · δ
(
Kl(A), a

)
. (9.7)

Here δ(a, b) denotes the Kronecker symbol for a, b ∈ V that equals one if a = b

and zero otherwise.

9.12 Proposition. If dim(UI) = 3 then
{
ka

}
a∈V −{Id}

is a base for UI.

Proof. The matrix of coordinate change from the k′s ordered as in Equa-

tion (9.6) to U1,2,U1,3,U1,4 is given by

1

2

0

B

B

B

@

−1 1 1

1 −1 1

1 1 −1

1

C

C

C

A

and has determinant 1
2 . The inverse transformations are given by

U1,2 = k(1 3)(2 4) + k(1 4)(2 3),

U1,3 = k(1 4)(2 3) + k(1 2)(3 4),

and U1,4 = k(1 2)(3 4) + k(1 3)(2 4).

(9.8)

9.13 Lemma. For a in V − {Id} and σ ∈ S4 holds σ ∗ ka = kα(σ)(a). Here α

is defined as in Eqn. (5.1).
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Proof. We choose any quadrilateral A ∈ T ∞
Q . Then

σ ∗ ka(A) = ka(σ−1A) = diam(σ−1A) · δ
(
Kl(σ−1A), a

)

= diam(A) · δ
(
σ−1Kl(A)σ, a

)
= diam(A) · δ

(
Kl(A), σaσ−1

)

= kα(σ)(a)(A).

9.14 Proposition. There is an isomorphism γ : β(S4) → Φ(S4) such that

γ ◦ β = Φ. Here β is defined as in Prop. 5.19. In particular V < ker(β) =

ker(Φ).

Proof. In view of Proposition A.4 it is sufficient to prove ker(β) = ker(Φ). We

distinguish the two cases dim(UI) = 3 and dim(UI) = 0. Let dim(UI) = 3.

Then {ka}a∈V −{Id} is a base for UI (Prop. 9.12). Now for σ ∈ S4 holds

σ ∈ ker(Φ) ⇔ Φ(σ)(ka) = ka for all a ∈ V − {Id}
(9.2)⇔ σ ∗ ka = ka for all a ∈ V − {Id}

Lemma 9.13⇔ kα(σ)(a) = ka for all a ∈ V − {Id}.

By Corollary 9.4 there are quadrilaterals of all three non-centered types, say

Kl(Aa) = a for a ∈ V − Id. So if kα(σ)(a) = ka for all a ∈ V − {Id} then

diam(Aa) · δ
(
a, α(σ)(a)

)
= kα(σ)(a)(Aa) = ka(Aa)

= diam(Aa) · δ
(
a, a)

for all a ∈ V − {Id}. Since diam(Aa) > 0 this implies that α(σ)(a) = a for

all a ∈ V − {Id}. Hence σ ∈ ker(α) = V . Conversely if σ ∈ ker(α) then

kα(σ)(a) = ka for all a ∈ V − {Id}. So ker(Φ) = V
Coro. 5.21

= ker(β).

Let dim(UI) = 0. Then Φ(S4) = IdGL(UI) and thus ker(Φ) = S4. By

Corollary 9.4 all quadrilaterals of T ∞
Q are centered thus ker(Φ) = S4

Coro. 5.21
=

ker(β).

The set of all functions of UI produce a partition of T ∞
Q into classes of

quadrilaterals which agree under all of these functions and that are preserved

by isometries. The invariant functions
{
ka

}
a∈V −{Id}

form a base for UI, hence

two quadrilaterals A,B pertain to the same class if and only if they have the

same Klein type and the same diameter. The classes can thus be sorted as

displayed in Figure 9.2.
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Figure 9.2: The classes of T ∞
Q consisting each one of quadrilaterals that have

the same Klein type and the same inner diameter are assigned to a tree as

follows. The tree consists of a vertex x of degree three with three rays ra

attached to x for a ∈ V − {Id}. To the class of centered quadrilaterals (if

not empty) the vertex x is assigned. To each other class (if not empty) with

quadrilaterals of Klein type a and inner diameter n (for a ∈ V − {Id}, n ∈ N)

is assigned a vertex y on the ray ra, such that d(x, y) = n.

There is a very informative function

UC := diam− 2 · k(1 3)(2 4) + (
√

2 − 1) · k(1 4)(2 3) (9.9)

in UI that carries all information about quadrilaterals that is contained in the

whole space UI.

9.15 Proposition. The value UC(A) ∈ C for UC ∈ UI as defined in equation

(9.9) determines the Klein type and the inner diameter of every quadrilateral

A ∈ T ∞
Q .

Proof. If A is centered then UC(A) = 0. If Kl(A) = (1 2)(3 4) then UC(A) =

diam(A) > 0, if Kl(A) = (1 3)(2 4) then UC(A) = −diam(A) < 0 and if Kl(A) =

(1 4)(2 3) then UC(A) =
√

2 · diam(A) > 0. The function U is constant on the

classes of T ∞
Q that are defined to consist of quadrilaterals that have the same

Klein type and the same inner diameter and induces hence a function ÛC from

these classes to C. We have to show that ÛC is injective, which is clearly the
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case if one can show that
√

2 6∈ Q, the field of rational numbers. This is a

classical proof to be found in the dawn of any course on number theory.

Assume that
√

2 = p
q
∈ Q for a lowest terms fraction p

q
of integers p, q ∈ Z.

It follows that p2 = 2 · q2, thus p2 is divisible by 2. This implies that p is

divisible by 2, so that q2 is devisable by 2. Thus also q is devisable by 2 in

contradiction to the assumption that p
q

is a lowest terms fraction.

9.16 Note. We are in a lucky position, we found a function in UI that deter-

mines the diameter and the Klein type. All invariant functions that are known

so far (the orientation ~o, the distances between bifurcations, hence the func-

tions of UI) depend only on these two invariant quantities. We will see in the

next section that there are no further invariants in the general setting. We can

give examples — regular trees together with their full automorphism group —

where no further invariants exist.

However, note that a more systematic search method for invariants should

consider rings and algebras of functions (where products among the functions

are allowed) rather than vector spaces only [Kra84].

Note also, that there is a simpler invariant function (not in UI) available that

determines the Klein type and the inner diameter. Define ma(A) := δ(Kl(A), a)

for a ∈ V − {Id}. Then

UD := 3 · diam− 2 · m(1 2)(3 4) − m(1 3)(2 4)

is invariant. It is easily seen that UD : T ∞
Q → N0 determines the values of Kl

and diam through a case selection in the range N0 mod 3.

9.2 Completeness of UC for Regular Trees

Throughout this section we assume that T is a regular tree. We show that the

invariant function UC defined in Eqn. (9.9) is a complete invariant for the full

automorphism group Aut (T ) in the case that T is a regular tree. This means

that for all quadrilaterals A,B ∈ T ∞
Q such that UC(B) = UC(A) there is a

morphism h ∈ Aut (T ) such that B = h(A). This condition is an equivalence

relation and it is equivalent by Proposition 9.15 to the condition

A ∼ B :⇐⇒ Kl(A) = Kl(B) and diam(A) = diam(B). (9.10)
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Recall from A. Figà-Talamanca and C. Nebbia [FTN91] that the group

Aut (T ) acts transitively on VT . For each vertex x ∈ T the stabilizer Aut (T )x

of x acts transitively on the sets Fn(x) := {y ∈ T : d(x, y) = n} for all n ∈ N0.

Further Aut (T )x acts transitively on the boundary T (∞).

9.17 Lemma. If T is a regular tree, A,B ∈ T ∞
Q and A ∼ B then there is an

automorphism h ∈ Aut (T ) such that b(i)B = b(i)h(A) for i = 1, 2, 3, 4.

Proof. This is obvious if A and B are centered since Aut (T ) acts transitively

on the vertices of T . In the case that Kl(A) = Kl(B) = (1 2)(3 4) then one can

define

x1 := b(1)A = b(2)A, x2 := b(3)A = b(4)A,

y1 := b(1)B = b(2)B and y2 := b(3)B = b(4)B

by Coro 5.27. Then by Prop. 5.22 holds d(x1, x2) = diam(A) = diam(B) =

d(y1, y2). Since Aut (T ) acts transitively on the vertices of T there is an auto-

morphism hT such that y1 = hT (x1). As d
(
y1, hT (x2)

)
= d

(
hT (x1), hT (x2)

)
=

d(x1, x2) = d(y1, y2), there is hR ∈ Aut (T )y1
with y2 = hRhT (x2). Thus

y1 = hR(y1) = hRhT (x1) shows that b(i)B = hRhT

(
b(i)A

)
= b(i)hRhT (A) for

i = 1, 2, 3, 4.

In the general case that Kl(A) = Kl(B) 6= Id there is σ ∈ S4 such that

Kl(σA) = Kl(σB) = (1 2)(3 4) (see the proof of Lemma 5.18). So there is

h ∈ Aut (T ) such that b(i)σ(B) = b(i)h◦σ(A) for i = 1, 2, 3, 4. Thus

b(i)B = b(i)σ−1σB
Prop. 5.5

= b
(
σ(i)

)
σB

= b
(
σ(i)

)
h◦σA

Prop. 5.6
= b

(
σ(i)

)
σ◦hA

Prop. 5.5
= b(i)σ−1σhA = b(i)hA

for i = 1, 2, 3, 4.

See [Wei04] for a definition and basic features of connected components of

a graph.

9.18 Proposition. If e1 := (x, y), e2 := (x, z) are edges of a tree T such

that (x, z) = h(x, y) for some automorphism h ∈ Aut (T ) then there is an

automorphism hC ∈ Aut (T ) such that for all p ∈ T holds

hC(p) =





h(p) if p ∈ CT ′(y),

Id(p) if p ∈ CT ′(x),

h−1(p) else.
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For vertices x̂ ∈ V(T ), the graph CT ′(x̂) denotes the connected component of

x̂ in the graph T ′ obtained from T by removing the edges e1, e1, e2, e2.

Proof. We first show that hC is well defined, that there is no conflict in setting

the definition. Since connected components are either equal or disjoint, it

is more than sufficient to show that VT is a disjoint union of VCT ′(x) and

VCT ′(y) ∪ VCT ′(z). Observe that all connected components of T ′ are trees. If

x ∈ CT ′(y) then there is the geodesic from [x, y] in the tree CT ′(y). As CT ′(y) is

a subgraph of T , [x, y] is a geodesic in T thus has edge sequence (x, y), which is

a contradiction to (x, y) 6∈ ET ′. Similarly x 6∈ CT ′(z), so the union is disjoint.

If p is any vertex of VT = VT ′ then the second vertex [x, p](1) of the

geodesic [x, p] equals y, z or another vertex. In the first two cases p is in CT ′(y)

or in CT ′(z), in the latter it is in CT ′(x). This shows that above union covers

VT .

Why is hC an automorphism? At first observe that hC
(
CT ′(y)

)
= CT ′(z).

If p ∈ CT ′(y), then [x, p] = [x, y][y, p] so that the composition [x, z][z, hC(p)] =

[h(x), h(y)][h(y), h(p)] = h
(
[x, y][y, p]

)
is a geodesic and we get hC(p) ∈ CT ′(z).

This shows hC
(
CT ′(y)

)
⊂ CT ′(z). The morphism hC as an automorphism

of T is locally bijective. Then, since CT ′(y) and CT ′(z) are trees, hC is an

isomorphism from CT ′(y) to CT ′(z) (see [Wei04], Corollaries of local behavior).

Now there are two cases to distinguish, CT ′(y) = CT ′(z) and CT ′(y) 6=
CT ′(z). In the latter case holds hC

(
CT ′(z)

)
= h−1

(
CT ′(z)

)
= CT ′(y) because T ′

has three connected components. Thus hC |T ′ is an automorphism. If CT ′(y) =

CT ′(z) then T ′ has two components and hC is an automorphism preserving

both of them.

One has hC(x) = x, hC(y) = h(y) = z and hC(z) = h−1(z) = y, so hC

maps all adjacent vertices to adjacent vertices and extends thus to T .

9.19 Definition (n-gons). A n-gon of boundary points P is an ordered n-

tuple of mutually distinct boundary points P = (1P , . . . , nP ). A n-gon of

boundary points is called centered if all its bifurcations are equal, that is

b(iP , jP , kP ) = b(lP ,mP , nP ) whenever {i, j, k}, {l,m, n} ⊂ {1, . . . , n} are such

that |{i, j, k}| = |{l,m, n}| = 3. The vertex that agrees with all bifurcations is

then called the center of P .
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For n-gons (n ≥ 3) and isometries h ∈ Is (T ) we set

h(P ) =
(
1h(P ), . . . , nh(P )

)
:=

(
h(1P ), . . . , h(nP )

)
.

Since isometries are injective, h(P ) is a n-gon.

9.20 Lemma. If P is a centered n-gon (n ≥ 3) with center x then h(P ) is

centered with center h(x) for all isometries h ∈ Is (T ).

Proof. Let b(iP , jP , kP ) be any bifurcation for some subset {i, j, k} ⊂ {1, . . . , n}
and |{i, j, k}| = 3. Then b

(
ih(P ), jh(p), kh(P )

)
= b

(
h(iP ), h(jP ), h(kP )

) Prop. 4.8
=

h
(
b(iP , jP , kP )

)
= h(x).

9.21 Proposition. If P,Q are two centered n-gons (n ≥ 3) of boundary

points in a regular tree T with the same center x then there is an automorphism

h ∈ Aut (T )x such that Q = h(P ).

Proof. The affirmation follows by induction on |F | from the following state-

ment. Let N denote the set {1, . . . , n}.
If R,S are two centered n-gons of boundary points in a regular tree that

have the same centers and iS = iR for all i ∈ F for some F ⊂ N with

|F | < n then there is an automorphism h ∈ Aut (T ) such that iS = ih(R)

for all i ∈ F ′ ⊃ F with |F ′| > |F | and such that the centers of R and

h(R) are equal.

For a proof of the statement, assume that for F ⊂ N holds iS = iR for all

i ∈ F and assume that for l ∈ N − F holds lS 6= lR. We take x as the center

of the two n-gons R and S. Further we define

yi := [x, iR)(1) and zi := [x, iS)(1)

for i ∈ N . By transitivity of Aut (T )x on the boundary of T , there is an

automorphism h̃ ∈ Aut (T )x such that lS = h̃(lR). Thus zl = [x, lS)(1) =
[
h̃(x), h̃(lR)

)
(1) = h̃

(
[x, 1R)(1)

)
= h̃(yl). Now by Proposition 9.18 there is an

isometry h ∈ Aut (T )x such that

h|C
T ′ (x) = Id|C

T ′ (x) and h|C
T ′ (yl) = h̃|C

T ′ (yl)

for the connected components CT ′(x) of x and CT ′(yl) of yl in the graph T ′

that is obtained from T by removing the edges (x, yl), (yl, x), (x, zl) and (zl, x).
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Now [x, lR) = [x, yl][yl, lR) so that [yl, lR) ⊂ CT ′(yl). This shows [zl, lS) =
[
h̃(yl), h̃(lR)

)
= h̃[yl, lR) = h[yl, lR) =

[
h(yl), h(lR)

)
and consequently lS =

h(lR) = lh(R).

Observe that y1, . . . , yn are mutually distinct since (iR, jR) = (iR, x][x, jR)

for all i 6= j in N . Similarly z1, . . . , zn are mutually distinct. For all i ∈ F

holds zi = [x, iS)(1) = [x, iR)(1) = yi, which implies

yi 6= yl and yi 6= zl

for all i ∈ F . This shows that yi ∈ CT ′(x) for all i ∈ F . The equality [x, iR) =

[x, yi][yi, iR) shows that [x, iR) ⊂ CT ′(x) for all i ∈ F . Thus
[
h(x), h(iR)

)
=

h[x, iR) = Id[x, iR) = [x, iR) shows that iS = iR = h(iR) = ih(R) for all i ∈ F .

In conclusion, for the set F ′ := F ∪ {l} holds iS = h(iR) for all i ∈ F ′.

Finally, since h ∈ Aut (T )x, Lemma 9.20 shows that the center of h(R)

equals the center of R.

Theorem 11. If T is a regular tree and A,B ∈ T ∞
Q have the same bifur-

cations, i.e b(i)B = b(i)A for i = 1, 2, 3, 4 then there is an automorphism

h ∈ Aut (T ) such that B = h(A).

Proof. If A and B are centered then the theorem is proved by Proposition 9.21

applied to the 4-gons A and B.

Assume that Kl(A) = Kl(B) = (1 2)(3 4). Then b(1)A = b(1)B = b(2)A =

b(2)B 6= b(3)A = b(3)B = b(4)A = b(4)B . We define x = b(4)A = b(4)B as the

center of the two triangles (1A, 2A, 3A) and (1B , 2B , 3B). Proposition 9.21 pro-

vides an isometry h ∈ Aut (T )x such that iB = ih(A) for i = 1, 2, 3. We check

that h(A) has the same bifurcations as A. By Prop. 5.2 follows b(i)h(A) =

h
(
b(i)A

)
= h(x) = x = b(i)A for i = 3, 4. So it remains to check b(1)A =

b(1)h(A) and b(2)A = b(2)h(A). Since b(1)hA = h
(
b(1)A

)
6= h

(
b(3)A

)
=

b(3)hA, Prop. 5.8 states that b(1)hA ∈
[
b(3)hA, 3hA

)
=

[
b(3)A, 3B

)
= [x, 3B).

Also b(1)A = b(1)B ∈
[
b(3)A, 3B

)
= [x, 3B) hence both b(1)hA and b(1)A

lie on the same ray from x to 3B . The distance equality d
(
x, b(1)hA

)
=

d
(
h(x), h

(
b(1)A

))
= d

(
h
(
b(4)A

)
, h

(
b(1)A

))
= d

(
b(4)A, b(1)A

)
= d

(
x, b(1)A

)

shows thus b(1)hA = b(1)A. Also b(2)hA = h
(
b(2)A

)
= h

(
b(1)A

)
= b(1)A =

b(2)A.



84 CHAPTER 9. INVARIANTS OF THE IDEAL BOUNDARY

By what has been shown in the previous paragraph, we assume that b(i)B =

b(i)A for i = 1, 2, 3, 4 and iB = iA for i = 1, 2, 3. We are in the situation drawn

in Figure 9.3.

1B = 1A

2B = 2A

3B = 3A

4A

4B

x̂

Figure 9.3: Identifying quadrilaterals A ∼ B of Klein type (1 2)(3 4).

Define x̂ := b(1)A = b(2)A = b(1)B = b(2)B and set y := [x̂, 4A)(1) as

well as z := [x̂, 4B)(1). By transitivity of Aut (T )
bx on the boundary T (∞)

there is an automorphism h̃ ∈ Aut (T )
bx such that 4B = h̃(4A). This implies

z = [x̂, 4B) =
[
h̃(x̂), h̃(4A)

)
(1) = h̃

(
[x̂, 4A)(1)

)
= h̃(y). So by Prop 9.18 there

is h ∈ Aut (T )
bx x such that h|C

T ′ (bx) = Id|C
T ′ (bx) and h|C

T ′ (y) = h̃|C
T ′ (y) for the

connected component CT ′(x̂) of x̂ and the connected component CT ′(y) of y in

the graph T ′ obtained from T by removing the edges (x̂, y), (y, x̂), (x̂, z) and

(z, x̂). By Lemma 4.9 on the partition of triangles, [x̂, 1A) ∩ [x̂, 4A) = x̂ since

x̂ = b(2)A. Also [x̂, 1A) = [x̂, 1B) shows that [x̂, 1A) ∩ [x̂, 4B) = x̂ because x̂ =

b(2)B . Similarly [x̂, 2A) ∩ [x̂, 4A) = x̂ since x̂ = b(1)A and [x̂, 2A) ∩ [x̂, 4B) = x̂

since x̂ = b(1)B . Finally [x̂, 3A) ∩ [x̂, 4A) = x̂ and [x̂, 3A) ∩ [x̂, 4B) = x̂. This

shows that these rays are contained in CT ′(x̂) and as such are fixed by h. The

final result is iB = ihA for i = 1, 2, 3, 4, which is the same as to say B = h(A).

For completeness consider two non-centered quadrilaterals A ∼ B in T ∞
Q .

By Lemma 5.18 there is σ ∈ S4 such that σ(A) and σ(B) have Klein type

(1 2)(3 4). As shown above there is an automorphism h ∈ Aut (T ) such that

σ(B) = h ◦ σ(A). Prop. 5.6 shows that h ◦ σ(A) = σ ◦ h(A) whence σ(B) =

σ ◦ h(A) and therefore B = h(A).

9.22 Corollary. If T is a regular tree, A,B ∈ T ∞
Q and A ∼ B then there is

an automorphism h ∈ Aut (T ) such that B = h(A).

Proof. This follows directly from Lemma 9.17 and Theorem 11.
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9.3 A Geometric Interpretation of Delay

The delay function del : T ∞
Q 7→ Z has a geometric interpretation. We choose

a geodesic g ∈ G with velocity V(g) = (α, ω) and a second geodesic h ∈ G with

velocity V(h) = (η, ξ) such that ξ 6= α and η 6= ω.

α

ω

η

ξ

α

ω

η

ξ

α

ω

η

ξ

α

ω

η

ξ

α

ω

η

ξ

Figure 9.4: Geometric construction of the geodesic delay

Recall the concepts of strongly stable and strongly unstable manifolds from

Section 8.2, as well as the definitions of the new-future maps NFut and new

past maps NPas. The image of g under the composed map

NPas
α ◦ NFut

ω ◦ NPas
η ◦ NFut

ξ (9.11)

is a geodesic with velocity (α, ω) like g. The geodesic g is transformed according

to the diagrams (from left to right) in Figure 9.4. Each time a new future is

assigned to the geodesic, the strongly unstable manifold is preserved and each

time a new past is assigned to the geodesic, the strongly stable manifold is

preserved.

9.23 Definition (Geodesic Delay). If g, h ∈ G have velocities V(g) = (α, ω)

and V(h) = (η, ξ) such that ξ 6= α and η 6= ω then a geodesic g′ := NPas
α ◦
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NFut
ω ◦ NPas

η ◦ NFut
ξ (g) with velocity V(g′) = (α, ω) is obtained. The unique

integer

Del(g|h) := k ∈ Z such that g′ = Lk(g)

is called the geodesic delay of g along h.

9.24 Note. The geodesic delay is well defined. The map defined in Eqn. (9.11)

maps a geodesic g to a geodesic g′ with the same velocity. Then Theorem 1

shows that g′ = Lk(g) for some k ∈ Z.

Theorem 12. If two geodesics g, h ∈ G obey the conditions ω(h) 6= α(g) and

α(h) 6= ω(g) then

Del(g|h) =





0 if α(h) = α(g)

or ω(h) = ω(g),

−2 · del
(
α(g), ω(g), α(h), ω(h)

)
else.

Proof. We set (α, ω) := V(g) and (η, ξ) := V(h) and choose a base point x ∈
VT . If η 6= α and ξ 6= ω then (α, ω, η, ξ) is a quadrilateral and

κx ◦ NPas
α ◦ NFut

ω ◦ NPas
η ◦ NFut

ξ (g)
Theorems

7 & 8= NPas
x,α ◦ NFut

x,ω ◦ NPas
x,η ◦ NFut

x,ξ ◦ κx(g)
Def. 8.1

= NPas
x,α ◦ NFut

x,ω ◦ NPas
x,η ◦ NFut

x,ξ

(
α, ω,Xx(g)

)

= NPas
x,α ◦ NFut

x,ω ◦ NPas
x,η

(
α, ξ,Xx(g) + [x, α, ω, ξ]

)

= NPas
x,α ◦ NFut

x,ω

(
η, ξ,Xx(g) + [x, α, ω, ξ] − [x, ξ, α, η]

)

= NPas
x,α

(
η, ω,Xx(g) + [x, α, ω, ξ] − [x, ξ, α, η] + [x, η, ξ, ω]

)

=
(
α, ω,Xx(g) + [x, α, ω, ξ] − [x, ξ, α, η] + [x, η, ξ, ω] − [x, ω, η, α]

)

(8.1)
=

(
α, ω,Xx(g) − [α, x, ω, ξ] − [x, η, ω, ξ] − [α, η, ω, x] − [α, η, x, ξ]

)

(8.1)
=

(
α, ω,Xx(g) − [α, η, ω, ξ] − [α, η, ω, ξ]

)

(9.3)
=

(
α, ω,Xx(g) − 2 · del(α, ω, η, ξ)

)

(8.2)
= L̂

−2·del(α,ω,η,ξ)(
α, ω,Xx(g)

)

Def. 8.1
= L̂

−2·del(α,ω,η,ξ) ◦ κx(g)
Theorem 6

= κx ◦ L−2·del(α,ω,η,ξ)(g).

This implies NPas
α ◦ NFut

ω ◦ NPas
η ◦ NFut

ξ (g) = L−2·del(α,ω,η,ξ)(g) because κx is

bijective by Theorem 6. Thus Del(g|h) = −2 · del(α, ω, η, ξ). If η = α then
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shorter as before one obtains

κx ◦ NPas
α ◦ NFut

ω ◦ NPas
α ◦ NFut

ξ (g)

= NPas
x,α ◦ NFut

x,ω ◦ NPas
x,α ◦ NFut

x,ξ ◦ κx(g)

= NPas
x,α ◦ NFut

x,ω ◦ NPas
x,α ◦ NFut

x,ξ

(
α, ω,Xx(g)

)

= NPas
x,α ◦ NFut

x,ω ◦ NPas
x,α

(
α, ξ,Xx(g) + [x, α, ω, ξ]

)

= NPas
x,α ◦ NFut

x,ω

(
α, ξ,Xx(g) + [x, α, ω, ξ]

)

= NPas
x,α

(
α, ω,Xx(g) + [x, α, ω, ξ] + [x, α, ξ, ω]

)

=
(
α, ω,Xx(g) + [x, α, ω, ξ] + [x, α, ξ, ω]

)

(8.1)
=

(
α, ω,Xx(g)

)

= κx(g),

and this shows that NPas
α ◦ NFut

ω ◦ NPas
α ◦ NFut

ξ (g) = g = L0(g) whence

Del(g|h) = 0. For the case that ξ = ω, note that NFut
x,ω (g′) = g′ and NFut

x,ω (g) =

g. Thus

NPas
α ◦ NFut

ω ◦ NPas
η ◦ NFut

ω (g)

= NFut
ω ◦ NPas

α ◦ NFut
ω ◦ NPas

η (g)
Lemma 8.5

= NFut
ω ◦ NPas

α ◦ NFut
ω ◦ NPas

η ◦ p ◦ p(g)
Prop. 8.9

= p ◦ NPas
ω ◦ NFut

α ◦ NPas
ω ◦ NFut

η ◦ p(g).

Since p(g) has velocity (ω, α) by Prop. 8.6, this equals by the previous case

p ◦ p(g) = g. Thus Del(g|h) = 0.

It seems somehow arbitrary for the construction of the geodesic delay to

first assign a new future, then a new past and so on. We consider a geodesic g

with velocity V(g) = (α, ω) and a geodesic h with velocity (η, ξ). The image g′

of g under the composed map

NFut
ω ◦ NPas

α ◦ NFut
ξ ◦ NPas

η (9.12)

is a geodesic with velocity (α, ω). Similarly to the case of the geodesic delay

this identifies a unique integer Del(g|h) ∈ Z such that

g′ = LDel(g|h)(g).

9.25 Corollary. If two geodesics g, h ∈ G obey the conditions ω(h) 6= α(g)

and α(h) 6= ω(g) then Del(g|h) = −Del(g|h).
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Proof. We put α := α(g), ω := ω(g), η := α(h) and ξ := ω(h). Then

NFut
ω ◦ NPas

α ◦ NFut
ξ ◦ NPas

η (g)
Lemma 8.5

= NFut
ω ◦ NPas

α ◦ NFut
ξ ◦ NPas

η ◦ p ◦ p(g)
Prop. 8.9

= p ◦ NPas
ω ◦ NFut

α ◦ NPas
ξ ◦ NFut

η ◦ p(g)
Theorem 12

= p ◦ LDel(p(g)|p(h)) ◦ p(g)

= p ◦ p ◦ L−Del(p(g)|p(h))(g)

= L−Del(p(g)|p(h))(g).

Compared to Theorem 12 this shows that Del(g|h) = −Del(p(g)|p(h)) =

2 · del(ω, α, ξ, η)
Prop. 9.14

= 2 · del(α, ω, η, ξ) = −Del(g|h) if (α, ω, η, ξ) is a

quadrilateral. Otherwise it follows that η = α or ξ = ω. Then Del(g|h) =

−Del(p(g)|p(h)) = 0 in accordance with Del(g|h) = 0.

Not only has the generation of the delay a geometric interpretation. A

geometric interpretation for the values of the delay, that emphasizes the two

involved lines, is also available. Let two lines 〈1, 2〉, 〈3, 4〉 have an empty inter-

section. Their distance is defined as

d
(
〈1, 2〉, 〈3, 4〉

)
:= min

x∈〈1,2〉
y∈〈3,4〉

d(x, y).

9.26 Proposition. If two lines 〈1, 2〉, 〈3, 4〉 have empty intersection, then a

unique pair of vertices a ∈ 〈1, 2〉 and b ∈ 〈3, 4〉 exists such that d(a, b) =

d
(
〈1, 2〉, 〈3, 4〉

)
. Moreover a = b(1, 2, 4) = b(1, 2, 3) and b = b(2, 3, 4) =

b(1, 3, 4).

Proof. A pair a ∈ 〈1, 2〉, b ∈ 〈3, 4〉 in minimal distance exists by well-ordering

of the natural numbers. If one such pair a, b is chosen, then a is a vertex on

〈1, 2〉 that has minimal distance to the vertex b. So by Lemma 4.10 holds a =

b(b, 1, 2). Similarly b = b(a, 3, 4). Thus all compositions 〈1, a][a, b], 〈2, a][a, b],

[a, b][b, 3〉, and [a, b][b, 4〉 are lines. Since a 6= b it follows that a, b ∈ 〈1, 3〉 ∩
〈1, 4〉 ∩ 〈2, 3〉 ∩ 〈2, 4〉. As a ∈ 〈1, 2〉, the Bifurcation Lemma shows that a =

b(1, 2, 3) = b(1, 2, 4). Finally b ∈ 〈3, 4〉 implies b = b(1, 3, 4) = b(2, 3, 4).

9.27 Proposition. Figure 9.5 displays the correct values of the delay function

del.
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Proof. From Eqn. (9.4) we know that del = U1,4 −U1,2. Then by comparison

to Figure 9.1 the expressions for the delay in terms of the inner diameter

diam becomes apparent. If A = (α, ω, η, ξ) has Klein type (1 2)(3 4) then by

Corollary 5.27 hold (α, ω) ∩ (η, ξ) = ∅ and b(ω, η, ξ) 6= b(α, ω, ξ). Thus

diam(A)
Prop. 5.22

= d
(
b(ω, η, ξ), b(α, ω, ξ)

) Prop. 9.26
= d

(
(α, ω), (η, ξ)

)
.

If A = (α, ω, η, ξ) has Klein type (1 4)(2 3) then one has (α, ω)∩ (η, ξ) 6= ∅ and

b(α, η, ξ) 6= b(ω, η, ξ). Thus

diam(A) = d
(
b(α, η, ξ), b(ω, η, ξ)

)
= len

([
b(α, η, ξ), b(ω, η, ξ)

])

Theorem 4
= len

(
(α, ω) ∩ (η, ξ)

)

in a slight abuse of notation, since the intersection of two lines is defined as a

vertex set.

A = (α, ω, η, ξ) ∈ T ∞
Q not centered

type (1 2)(3 4) type (1 3)(2 4) type (1 4)(2 3)

α

ω

η

ξ

α

ω

η

ξ

α

ω

η

ξ

del(A) = diam(A) 0 −diam(A)

del(A) = d
(
(α, ω), (η, ξ)

)
0 −len

(
(α, ω) ∩ (η, ξ)

)

Figure 9.5: Geometric interpretation of the delay



Chapter 10

Prospects

There are many directions for further development. One could try to find more

invariants — or one could try to find out more about invariants.

The first direction will depend on an explicit restriction to clear described

trees and groups acting upon, since in the general setting there is only one

invariant as shown in Section 9.2. We will give an example in the next section.

The second direction could be inspired by transcriptions from the analysis

of geodesic flows on compact, connected, negatively curved Riemannian mani-

folds as motivated in the introduction, Chapter 1. The last two sections of the

present chapter offer expectations that exhibit a kind of duality. The concor-

dance may be interpreted as a cross ratio. On the other hand one can hope

to see the same function as a symmetric 2-form on a (to be defined) tangent

bundle TT as an extension of the unit tangent bundle T1T .

10.1 Trees with more Invariants

The class of semi-regular trees offers an easy example for an additional invari-

ant.

A p, q-semi-regular tree is a tree that has only vertices of degrees p, q ∈ N

such that for adjacent pairs of vertices x and y one of the vertices has degree

p, the other has degree q.

If T is a p, q-semi-regular tree with p 6= q and p, q > 2 then there are
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additional invariant functions (i = 1, 2, 3, 4)

degi(A) :=





p if deg
(
b(i)A

)
= p

q if deg
(
b(i)A

)
= q

(10.1)

defined for A ∈ T ∞
Q . The functions are invariant under automorphisms. By

Proposition 5.2, holds b(i)h(A) = h
(
b(i)A

)
for i = 1, 2, 3, 4, all quadrilaterals

A ∈ T ∞
Q and all h ∈ Aut (T ). Since every automorphism preserves the classes

of vertices with the same degree, one has deg
(
b(i)h(A)

)
= deg

(
h
(
b(i)A

))
=

deg
(
b(i)A

)
.

On the other hand, for each vertex x ∈ V(T ) there is a quadrilateral A that

has the bifurcation b(1)A located at x. One needed to show that T is geodesic

complete (which should not be difficult). The proof of Proposition 9.3 contains

then a proof of existence of such a quadrilateral. The degree of a bifurcation is

new information that can not be expressed by the diameter or the Klein type

of A.

In the same spirit one could investigate a tree with a group of isometries

that does not act transitively on the vertices. In view of Proposition 9.21 a

second approach would be to consider groups that have vertex stabilizers which

do not act transitively on the boundary of the tree. It would be interesting

to know how transitivity for vertices and transitivity for boundary points are

related.

Considering a n, 2-semi-regular tree T for n > 2, every isometry still pre-

serves the two classes of vertices with the same degree. But the invariants

from Eqn. (10.1) are here all constant: since the bifurcation of a triangle

of boundary points has at least degree three (see the proof of Prop. 9.3), it

follows degi(A) = 3 for all A ∈ T ∞
Q for all i = 1, 2, 3, 4. So the functions

deg1,deg2,deg3 and deg4 do not contribute with a new invariant in the case of

a n, 2-semi-regular tree.

10.2 Concordance as a Cross Ratio?

In the article [Ham99], U. Hamenstädt considers compact, connected, nega-

tively curved Riemannian manifolds (M, g) with a universal covering (M̃, g̃)

and its ideal boundary ∂M̃ . She relates a certain cross ratio, the cross ratio of
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the length cocycle of the metric g̃, to the symplectic structure on the space of

geodesics GM̃ .

This motivates a search for cross ratios on trees. First let us state the

definition from [Ham99].

10.1 Definition. A generalized cross ratio is a Hölder continuous positive

function Cr on the space of quadruples of pairwise distinct points in ∂M̃ with

the following properties:

1. Cr is invariant under the action of the fundamental group on
(
∂M̃

)4
;

2. Cr(ξ, ξ′, η, η′) = Cr(ξ′, ξ, η, η′)−1;

3. Cr(ξ, ξ′, η, η′) = Cr(η, η′, ξ, ξ′);

4. Cr(ξ, ξ′, η, η′)Cr(ξ′, ξ′′, η, η′) = Cr(ξ, ξ′′, η, η′);

5. Cr(ξ, ξ′, η, η′)Cr(ξ′, η, ξ, η′)Cr(η, ξ, ξ′η′) = 1.

A comparison to the following relations for the concordance [·] : T ∞
Q → Z

1. [·] is invariant under the action of groups of isometries on T ∞
Q ;

Corollary 5.31

2. [ξ, ξ′, η, η′] = −[ξ′, ξ, η, η′]; Proposition 5.32

3. [ξ, ξ′, η, η′] = [η, η′, ξ, ξ′]; Proposition 5.32

4. [ξ, ξ′, η, η′] + [ξ′, ξ′′, η, η′] = [ξ, ξ′′, η, η′]; Theorem 5

5. [ξ, ξ′, η, η′] + [ξ′, η, ξ, η′] + [η, ξ, ξ′η′] = 0. Proposition 5.32

shows that any positive real number taken to the power of concordance, say

the function

e[·] : T ∞
Q → R+ (10.2)

is a generalized cross ratio on the ideal boundary of a tree. Whether the cross

ratio e[·] on T ∞
Q is analogous to the cross ratio of the length cocycle of the

metric g̃ remains an open question for future research.

Concerning the question about Hölder continuity, it is not difficult to see

that [·] is a continuous function on T ∞
Q endowed with the relative topology of
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the product topology of the standard topology for T (∞) introduced in [Wei04]:

the rays from a bifurcation of a quadrilateral to the points of the quadrilateral

are finally in distinct branches of the tree, so they can be altered each one in

an open set of T (∞) without changing any of the bifurcations. Regarding the

Hölder continuity, in a future work, one could try to find Lipschitz estimates

when an appropriate metric on T ∞
Q was found.

10.3 Concordance as a Symmetric 2-Form?

In Section 8.3 we introduced a unit tangent bundle T1T to a tree T as

T1T =
{

(z, l) : l ∈ T1
zT , z ∈ V(T )

}
.

The unit tangent space

T1
zT =

{
(η, ξ) ∈ VT : [z, η, z, ξ] = 0

}

at a vertex z consists of all possible velocities v ∈ VT that a geodesic through

z may have.

Compared to the analysis of differentiable manifolds, where bilinear forms

on the tangent spaces play an important role, a natural question to ask is,

whether there is some kind of “bilinear form” on T1
zT or rather on an extension

of T1
zT to some Z-module. How such an extension could be constructed must

be left as an open question for future research.

However, a minimum requirement to such a “bilinear form” 〈·, ·〉, since lin-

ear, would be the feature that it changes sign under inversion in one argument,

〈−v, w〉 = −〈v, w〉

for v, w ∈ T1
zT . For differentiable manifolds, corresponding to a change in

sign of a tangent vector is the change of direction of a curve representing that

vector. For trees, this operation is expressed in terms of a velocity (η, ξ) ∈ VT

by

−(η, ξ) := (ξ, η).

Since we are interested in objects that are sustained by a projection to

a quotient of the tree, we ask for invariance of 〈·, ·〉 under some group H of
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isometries. So we are to find a function F : T ∞
Q → R such that

h ∗ F = F for all h ∈ H and (1 2) ∗ F = −F .

To determine all functions with these properties for a given tree and a group

H < Aut (T ) seems a highly non-trivial problem. Yet, tools are prepared to de-

termine all “bilinear forms” in the space UI that was introduced in Section 9.1.

10.2 Proposition. The functions F ∈ UI that change sign under the permu-

tation (1 2) consist exactly of the subspace spanned by the concordance [·].

Proof. This is clear if dim(UI) = 0. Otherwise Φ(1 2) corresponds to the matrix

0

B

B

B

@

1 0 0

−1 −1 0

0 0 1

1

C

C

C

A

with respect to the base del, [·], diam by Proposition 9.9. Now the equation

(1 2)∗F = −F is by definition (9.2) equivalent to the equation Φ(1, 2)(F ) = −F

or
(
Φ(1 2) + Id|UI

)
(F ) = 0. This equation is expressed in coordinates by




2 0 0

−1 0 0

0 0 2


 ·




x1

x2

x3


 = 0.

The solution is Cx2 and corresponds to the functions C[·].

Like all functions of UI, the concordance is by Proposition 9.14 invariant

under the Klein 4-group V , which implies for all quadrilaterals (α, ω, η, ξ) of

boundary points that

[η, ξ, α, ω] = (1 3)(2 4) ∗ [α, ω, η, ξ] = [α, ω, η, ξ].

The concordance would be a “symmetric bilinear form”.



Appendix A

Groups

For the following selection of group-related topics we refer to [KS98].

A.1 Definition (Klein 4-group). The Klein 4-group consists of four elements

{Id, a, b, c} that obey multiplication rules as made precise in Figure A.1. As

the reader can see, the Klein 4-group is abelian and all non-trivial element are

involutions.

Id a b c

Id Id a b c

a a Id c b

b b c Id a

c c b a Id

Figure A.1: The group table of the Klein 4-group.

As an explicit calculation shows, the Klein 4-group is isomorphic to the normal

subgroup

V :=
{
(1 2)(3 4), (1 3)(2 4), (1 4)(2 3), Id

}

of the symmetric group S4. We refer henceforth with the name Klein 4-group

to the group V < S4.

A.2 Proposition. The group S4 acts by conjugation on V :

(σ, τ) 7−→ α
(
σ
)
(τ) := στσ−1
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for all σ ∈ S4, τ ∈ V . For all non-trivial elements (i j)(k l) ∈ V holds

α(σ)
(
(i j)(k l)

)
=

(
σ(i)σ(j)

)(
σ(k)σ(l)

)
.

Proof. The group S4 acts on S4 by conjugation. Two permutations τ1, τ2 ∈ S4

are conjugate in S4 if and only if they have the same cycle structure. Since

the group elements (1 2)(3 4), (1 3)(2 4) and (1 4)(2 3) are the only elements of

S4 that are composed of two cycles of length two, V is a normal subgroup and

therefore the action of S4 on S4 restricts to an action on V .

Further, for all permutations σ ∈ S4 and for all cycles (i j) ∈ S4 holds the

relation σ(i j)σ−1 =
(
σ(i)σ(j)

)
. Thus for (i j)(k l) ∈ V holds σ(i j)(k l)σ−1 =

σ(i j)σσ−1(k l)σ−1 =
(
σ(i)σ(j)

)(
σ(k)σ(l)

)
.

The dihedral group D2n for n ∈ N can be defined as a group generated by

two involutions g, h such that the product gh has order n.

A.3 Proposition. For the group action α : S4 → Aut (V ) (Prop. A.2) holds

α(S4) ≃ D6 ≃ S3 and ker(α) = V .

Proof. The Klein 4-group V is abelian hence V ⊂ ker(α). We show that

α(S4) ≃ D2n for n = 3. The group α(S4) is generated by α(σ) and α(τ) for

σ := (1 2 3 4) and τ := (1 2). The group elements α(σ) and α(τ) are involutions

because σ2 ∈ V ⊂ ker(α) and τ2 = IdS4
. The group elements α(σ) and α(τ) are

not trivial: α(σ)
(
(1 2)(3 4)

)
= (1 4)(2 3) and α(τ)

(
(1 4)(2 3)

)
= (1 3)(2 4). Since

τσ = (2 3 4) this shows also that α(τ)α(σ) has order three. Thus α(S4) ≃ D6.

By Lagrange follows now ker(α) = V .

A.4 Proposition. If F is a group and two homomorphisms α : F → G and

β : F → H for groups G and H are given such that ker(α) ⊂ ker(β) then there

is a homomorphism γ : G → H such that γ ◦ α = β.

Proof. By the first Isomorphism Theorem one has G ≃ F/ ker(α). Thus a map

γ : G → H is well defined by γ
(
g ker(α)

)
:= β(g) for g ker(α) ∈ G. Since ker(α)

is a normal subgroup of F the map γ is a homomorphism. Finally observe that

for all g ∈ F holds γ ◦ α(g) = γ
(
α(g)

)
= γ

(
g ker(α)

)
= β(g).
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